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Abstract

We present a method for learning a set of genera-
tive models which are suitable for representing varia-
tions of selected image-domain features of the scene as
a function of changes in the camera viewpoint. Such
models are important for robotic tasks, such as prob-
abilistic position estimation (i.e. localization), as well
as visualization. QOur approach entails the selection of
image-domain features, as well as the synthesis of mod-
els of their visual behavior. The model we propose is
capable of generating maximum likelihood views of au-
tomatically selected features, as well as a measure of the
likelihood of a particular view from a particular cam-
era position. Training the models involves regularizing
observations of the features from known camera loca-
tions. The uncertainty of the model is evaluated using
cross validation. The features themselves are initially
selected automatically as salient points by a measure of
visual attention, and are tracked across multiple views.
While the motivation for this work is for robot localiza-
tion, the results have implications for image interpo-
lation, virtual scene reconstruction and object recogni-
tion. This paper presents a formulation of the problem
and illustrative experimental results.

1 Introduction

This paper describes a technique for learning gener-
ative models of image-domain features of an environ-
ment, and then using them for camera position esti-
mation in a Bayesian framework. The models capture
not only projective geometry, but also appearance vari-
ation due to perspective and illumination phenomena.
We also measure our confidence in each model so as to
deliver likelihood estimates of future observations. Our
goal is to employ these models for a variety of visual-
ization and robotics tasks. In this paper we consider
the task of robot localization.

For many robotic tasks an important problem is that
of evaluating the likelihood of an observation z of the
environment given some piece of relevant information
q, such as the location, or pose, of the camera, or a par-

ticular object model hypothesis. The likelihood func-
tion p(z|q) is useful for the task of Bayesian Inference,
which allows for the computation of the maximum like-
lihood location or model q*:
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As a very simple example, Figures 1 a) and c) de-
pict images from a laboratory environment from known
poses go = 0 and ¢; = 1. Given the image in Figure 1
b), taken from an unknown pose g which lies some-
where between ¢g and ¢, the task of localization is to
find a ¢* which maximizes the likelihood of the image
according to Equation 2.

Rather than computing the likelihood of the entire
image, which is a computationally complex problem,
this paper addresses the problem of learning genera-
tive models of local image features that can be used
to compute the likelihood of observations of these fea-
tures from a particular pose. This is accomplished for
any given feature f by computing the maximum likeli-
hood observation z* given the pose of the camera q, and
employing an associated model uncertainty to compute
the likelihood function p(z|q) based on ||z—z*||. Due to
the generative nature of the model, we effectively pro-
duce virtual observations of scene features from novel
views. As such, our approach also has useful implica-
tions for image interpolation and scene reconstruction.

Our approach operates by automatically selecting
potentially useful features {f;} from a set of training
images of the scene taken from a variety of camera poses
(i.e. samples of the configuration space of the sensor).
The features are selected from each image at each po-
sition on the basis of the output of a visual attention
operator and are tracked over the training images. This
results in a set of observations of many features from
different positions. For a given feature f, the recon-
struction task then becomes one of learning the imag-
ing function F}(-), parameterized by camera pose, that
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Figure 1: Laboratory Scene: a) known pose q=0, b) q unknown, c) known pose q=1

gives rise to the imaged observation z* of f:

z" = Fj(q) (3)

Clearly, the imaging function is also dependent on
scene geometry, lighting conditions and camera param-
eters, which are difficult and costly to recover[12]. Tra-
ditional approaches to the problem of inferring Fy(-)
have either focussed on recovering properties of the fea-
ture under strict surface or illumination constraints (c.f.
[1]), or developed implicit appearance-based represen-
tations (e.g. principal components analysis) which of-
ten fail to account for the effects of geometry, and hence
lead to blurred interpolations between views. Our work
addresses the problems inherent in appearance-based
representations by capturing feature geometry implic-
itly. That is, both the appearance and geometric at-
tributes of the feature are captured in a single regu-
larization framework. We accomplish this by repre-
senting geometry in the space of affine transformations
of the image in the neighborhood of the feature. The
best-fit transformation parameters are clearly depen-
dent on the camera position, and can be applied as a
precursor to developing an appearance-based represen-
tation, which is better suited to representing variation
due to radiosity and illumination conditions. Further-
more, the application of an attention operator allows
one to focus on the local behaviors of features, which
may be easier to model than global properties. In ad-
dition, an attention-based approach provides some ro-
bustness to complications such as scene dynamics and
sensor occlusion.

In the next section we consider prior work on the
problem of vision-based robot localization.

2 Prior Work

Our work is motivated by a need to address the task
of probabilistic robot mapping, localization and navi-
gation using a vision sensor. Prior work on this task

has been successful using sonar and other range-sensing
modalities. Recent work by Pourraz and Crowley, as
well as Nayar et al. have examined an appearance-
based model of the environment and perform local-
ization by interpolation in the manifold of principal
components[8, 5]. In other work, Dellaert et al. have
demonstrated the feasibility of employing a vision sen-
sor in the Markov framework[2]. However, the model
of the environment is reduced to a simple overhead
planar mosaic, and the sensor model is reduced to
a single intensity measurement at each camera loca-
tion. While these approaches demonstrate the utility
of appearance-based modeling, they suffer due to the
dependency of the result on global sensor information.
Furthermore, it is not clear that a strict PCA-based
representation can scale for larger environments.

Recent works by Lowe, by Jugessur and Dudek and
by Schmid in the problem domains of object and of
place recognition demonstrate that object descriptions
are captured well by local pseudo-invariants[4, 3, 10].
An attention-style mechanism is employed to extract
a set of local object features, and the features are
matched against previously learned features for each
object class. The benefits of local representations in-
clude robustness to partial occlusion and sensor noise.
An important aspect of both works is the task of recog-
nizing invariants under changes in viewing conditions.
In particular, the attention operators developed are re-
spectively robust to changes in scale and planar rota-
tion. For the localization problem, it is not only im-
portant to be able to recognize pseudo-invariants, but
to be able to parameterize the effects changes in pose
have on the feature. While our current work considers
only translation invariance, these prior works indicate
the feasibility of including other parameterizations.

Our own prior work has demonstrated the utility and
potential accuracy of feature-based localization[11]. In
that work, observed features are projected into the sub-



space spanned by previous observations of the feature,
and the resulting pose estimates are combined in a ro-
bust fashion. The drawback to this approach is that,
like PCA-based methods, the construction of the fea-
ture subspace does not scale well for larger environ-
ments, and it entails a challenging parameter estima-
tion subtask to permit the elimination of outliers. More
importantly, our prior work did not employ a Bayesian
framework, and as such did not model image features
but imposed a one-to-one mapping between observa-
tions and pose. This paper addresses these issues by
reconsidering the problem in the context of a generative
model of feature behavior, and presenting experimental
results for a larger pose space than we have considered
in the past.

In the subsequent sections we describe the feature
model, present our learning framework, discuss the ap-
plication of the model to the tasks of scene reconstruc-
tion and robot localization, and present experimental
results.

3 The Generative Feature Model

We are interested in learning a model of a scene fea-
ture, given a set of observations of the feature from
known camera positions. The model will be capable
of producing maximum-likelihood virtual observations
(predictions) of the feature from previously unvisited
poses. It will also be capable of estimating the likeli-
hood of a new observation, given the (possibly hypo-
thetical) pose from which it was observed.

We will represent an observation of a feature f by
the vector z = [t7 i”]7, where t represents the param-
eters that specify an affine transformation of the image
sub-window of f to achieve an optimal fit to a represen-
tative template of f, and i represents the local image of
f after t ! has been applied. In this paper, we consider
only the translation of the feature in the image plane
as the space of possible transformations- a more com-
plete approach would be to also consider rotation and
scaling, but we will defer this issue to future work. The
observation z is a vector-valued function of the pose of
the camera q. We seek to learn an approximation F(-)
of this function, as expressed in Equation 3.

The approach we take to learning F(-) is by model-
ing each element of z as a linear combination of radial
basis functions (RBF's), each of which is centered at a
camera locus of the observations.

Formally, each scalar element z; of z is expressed as

zi(q) = Z w;G(a, q;) (4)

where G(+, ) is an exponential function centered at the

locus q; of observation j,

2
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and the w;’s are weights that are learned from the

training observations. The variance o in Equation 5 is

selected on the basis of the number of observations n

and the maximal distance d in between observations in

pose space:

G(a,q;) = exp(

d
0= —7= (6)

The computation of the weights w; is well under-
stood in the context of regularization and interpolation
theory and is described elsewhere[14, 7]. The computa-
tional cost for n observations is that of an O(n?) singu-
lar values decomposition of an n by n matrix, followed
by an O(n) back-substitution for each z;. The selection
of o according to Equation 6 induces an exact interpo-
lation of the observations. In practice, however, it is
desirable that the feature model be capable of extrap-
olating beyond the set of observed poses— increasing o
can accomplish that at the minor expense of a smoother
interpolating function.

Figure 2 depicts three generated instances of the
same feature from different poses. The predicted fea-
ture image i is plotted at the predicted image location
t. Note the variation in both appearance and position
of the feature in the image.

3.1 Visibility

In addition to modeling the appearance and relative
geometry of appearance-domain features, it is also valu-
able to model their wvisibility. That is, whether or not a
particular feature is visible from a particular location
in pose-space is informative for the task of localization
and important for the problem of reconstructing the
scene. We employ the same regularization framework
to learn a visibility likelihood function p(visible(f)|q),
training the function with the binary observability of
each feature from each visited pose in the training set!.
This information is also useful for informing the ques-
tion of where to collect new training examples.

3.2 Model Uncertainty

Given the predicted maximum likelihood observa-
tion z* of a feature f, one might compute the likeli-
hood of a new observation z on the basis of ||z — z*||.
It is not clear, however, how a metric in the space of
observations can be consistently defined (recall that an
observation is a combination of pixel intensities and

IThe regularizer can produce likelihood values less than zero
or greater than one— we clamp these outputs when they occur
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Figure 2: A Feature as generated from three different camera positions. Each feature image has been cropped and enlarged
for the purposes of depicting appearance variations. The same cropping parameters were employed in each case, in order

to depict the variation in feature position.

transformation parameters). Nor is it clear that the
observation space is smooth and/or continuous. Fur-
thermore, how does the likelihood behave as a function
of the metric? We model the likelihood function as a
Gaussian with a covariance C determined by leave-one-
out cross-validation[6].

Given the very high dimensionality of the observa-
tion space, however, the covariance C' is almost guar-
anteed to be rank-deficient, which poses problems for
numerical stability in the presence of noisy observa-
tions. To overcome this problem, we represent the met-
ric ||z—z*|| as the Euclidean metric of the vector space
defined by

ze = f(z2") = [li- 15, (6 —t9)T] (1)

where i* and t* are the intensity and transformation
components of the maximum-likelihood prediction, re-
spectively. The likelihood function is then expressed
as

p(z|q) = cexp(—0.5z1 C~'z,) (8)

where ¢ = ((2)M det C)~1/2, z. is the transformed
z —z* and M is the dimensionality of the transformed
observation space.

The covariance C' is not only useful as a model pa-
rameter, but is also a useful measure of model fit.
Trained features whose model covariance contains large
trace values can be eliminated from the set of features
on the basis that the feature is not modeled well and
will not be useful for feature reconstruction or camera
localization.

4 The Learning Framework

In this section we present our approach to collecting
and extracting observations of scene features. This pro-
cess is necessary in order to a) instantiate models in the
first place, and b) consider a wide variety of potential
features.

4.1 Overview

Our learning approach operates as follows:

1. The robot explores the environment, collecting im-
ages from a sampling of positions. It is assumed
that a mechanism is available for accurate pose es-
timation during the exploratory stage (such as a
second observing robot[9], or the utilization of an
expectation-maximization (EM) approach to map
building[13]).

2. A subset of images are selected, and features are
extracted from them using a model of saliency.

3. For each extracted feature, a generative feature
model is initialized.

4. The generative model is applied in conjunction
with the saliency measure to locate a match to
each feature in each of the collected images (as de-
scribed below). As new observations (matches) are
found, the generative model is updated. In the in-
terests of mediating computational efficiency and
robustness, when the number of observations asso-
ciated with a particular model exceeds a threshold,
the model is split into two separate sets of observa-
tions and treated as two different feature models.

5. When the matching is complete, a confidence mea-
sure is computed for each feature model, and the
models are stored for future use.

Note that while we have presented our approach as
a batch computation over the training images, it is se-
quential in nature and the matching and model updat-
ing can be performed in conjunction with the collection
of new training images.

In the following sections, we will discuss the details
of how features are detected and tracked.

4.2 Feature Detection

As we have described, potential features are initially
extracted from a subset of the training images using a



model of visual saliency. In this work we employ edge
density as our attention operator. The edge map from
a given image is convolved with a Gaussian kernel and
local maxima in the convolution are selected as salient
features. Figure 3 depicts the selected features from an
image as superimposed squares over the original, and
the convolved edge map.

Figure 3: Detected Features in an Image. The original
image, and the convolved edge map or density function.
The extracted features are marked by squares.

4.3 Feature Matching

Once an initial set of features have been extracted,
a generative feature model is initialized for each. The
next phase is matching the detected features over the
entire training image set. Each training image is
searched in sequence for each feature. Given that the
camera pose of any given training image is known, we
use the generative model of the feature to predict the
intensity image iy of the feature for the training image
being searched. We define the best match to iy in the
image to be the image sub-window i* centered at po-
sition (z*,y*) that has maximal correlation p with the
predicted image iy: . .
ol ©
izl [ifl|

When matching is complete, we have a set of
matched features, each of which is comprised of a set
of observations from different camera poses. Figure 4
depicts one such set, where each observation is laid out
on an overhead view of the pose space; grid locations
where there is no observation correspond to locations
in the pose space where the feature was not found in
the corresponding training image. Note that the gen-
erative nature of the matching mechanism allows the
appearance of the feature to evolve significantly over
the pose space.

p=cosf =

5 Applications
5.1 Scene Reconstruction

Given a set of trained features and a particular pose
q, one can generate a maximum likelihood reconstruc-
tion of the scene features. The generated maximum

Figure 4: A set of observations of an extracted scene fea-
ture. The grid represents an overhead view of the pose space
of the camera, and feature observations are placed at the
pose corresponding to where they were observed. Note that
the observations capture variation in feature appearance.

likelihood observations are each weighted by their like-
lihood (which varies inversely with the determinant of
the feature covariance C') and superimposed onto a
blank image. For example, Figure 3 a) shows a training
image from a laboratory scene for which training im-
ages have been collected at 25cm intervals over a 6.0m
by 3.0m pose space; Figure 5 depicts the reconstruction
of the same scene from a nearby pose. Note that the
reconstruction cannot predict pixels for which there is
no feature model, and as such, the lower edge of the
image is left unshaded.

Figure 5: A reconstruction of the laboratory scene de-
picted in Figure 3, as predicted from a nearby camera
pose.

5.2 Localization

Given a set of feature models, the task of robot lo-
calization can be performed using Bayesian Inference.
When the camera is at an unknown position, an obser-
vation is obtained and optimal matches to the learned



features are detected in the image, Z = {zs}. Each
feature observation zy then contributes a probability
density function (pdf) p(zf|q), which is defined as the
product of the pdf due to the maximum likelihood pre-
diction of the model (Equation 8) and the feature visi-
bility likelihood p(visible(f)|q). In the absence of infor-
mative priors, the pose q* that maximizes the joint like-
lihood of the observations is considered to be the max-
imum likelihood position of the robot, as illustrated
by Equation 2. Numerically, the joint likelihood can
be difficult to compute, as it requires summing over
all permutations of successful and unsuccessful feature
matches. Instead, we approximate the likelihood as the
sum of the individual pdf’s:

p(Zla)~ Y plzfla)

zy€Z

(10)

Note that a complete description of the probabil-
ity density function should take into account the likeli-
hood of the match between each detected feature and
all possible generated observations. However, such an
approach is not only intractable, but taking an approx-
imation as a joint probability also leads to catastrophic
cancellation in the presence of outlier matches. In the
following section we present our experimental results
for the task of camera localization.

6 Experimental Results

In this experiment, we test the learning framework
and feature models on the task of robot localization.
The laboratory scene depicted in Figure 3 was explored
by taking 291 training images at uniform intervals of
about 25cm over a 3.0m by 6.0m pose space. An ob-
serving robot was deployed to estimate the ground-
truth position of the exploring robot to an accuracy
of about 4cm, as described in [9]. For the purposes
of this experiment, the robot attempted to take train-
ing images at the same global orientation. However,
noise in the robot’s odometry, as well as the observing
robot’s estimator, led to some noise in this orientation
from pose to pose.

A set of initial features were extracted from a small
subset of the training images, and more than 117 fea-
ture models were trained. Those models with high un-
certainty, or with too few observations were removed,
resulting in 80 reliable feature models.

To validate the learned models, a set of 93 im-
ages were collected from random poses, constrained to
lie anywhere within the 3.0m by 6.0m training space.
These test images were used to compute maximum-
likelihood estimates of the camera’s position, and the
maximum likelihood estimates were compared against

the “ground truth” estimates provided by the observ-
ing robot. The maximum-likelihood (ML) estimates
themselves were computed by exhaustive search in the
training space, selecting the hypothesized q that maxi-
mized Equation 10. Note that in a production environ-
ment, a more efficient estimator, such as Monte Carlo
sampling, could be deployed.

In practical settings, one is not always interested
in the ML pose estimate, but rather the entire pdf of
possible poses. Figure 6 depicts the un-normalized pdf
resulting from evaluating Equation 10 for a single test
image over a uniform grid of poses. The figure clearly
indicates a region where the pose is highly likely, as
well as a second, wider less-likely region. The second
region is likely due to a mis-classified feature (a failure
in the matching stage), or possibly some self-similarity
in a trained feature.

Pose Likelihood Distribution
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Figure 6: Likelihood function of pose of robot over 3.0m
by 6.0m pose space. Note that the distribution is not
unimodal, possibly due to a misrecognized feature, or
model self-similarity at different poses.

Given that each ML estimate has an associated like-
lihood, it is possible to reject pose estimates that do
not meet a particular likelihood threshold. In this way,
four of the 93 estimates were rejected. Interestingly,
the majority of these estimates were associated with
images that were obtained when the robot was very
close to the wall it was facing, where it was difficult
to reliably track features at the large training interval
(25cm).

Figure 7 plots the location of the unrejected ML es-
timates for the test images (’x’) against the “ground
truth” camera position (’0’). The mean absolute er-
ror is 17cm, (7.7cm in the z direction vs 15cm in the
y direction). The larger error in the y direction corre-



sponds to the fact that the camera was pointed parallel
to the positive y axis, and changes in observations due
to forward motion are not as pronounced as changes
due to side-to-side motion. The smallest absolute er-
ror was 0.49cm, which is insignificant compared to the
“ground truth” error, and the largest error was 76cm.
Note that most of the larger errors occur for large values
of y. This is due to the fact that the camera was clos-
est to the wall it was facing at these positions y, and as
has been mentioned, tracking scene features over 25cm
pose intervals became nearly impossible.

Localization results for database.dat
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Figure 7: The set of maximum-likelihood pose esti-
mates (’x’) plotted against their “ground truth” esti-
mates ('0’).

7 Discussion and Conclusions

We have presented a method for learning genera-
tive models of visual features. The method operates by
matching image features over a set of training images,
and learning a generating function parameterized by
the pose of the camera which can produce maximum
likelihood feature observations. The system also mod-
els the uncertainty of the generated features, allowing
for Bayesian inference of camera pose.

The experimental results demonstrate the utility of
the learned feature models for pose estimation, as well
as other tasks, such as scene reconstruction. Our exper-
iments have demonstrated the stability and smoothness
of the resulting pdf over camera pose, and we were able
to detect most outliers by thresholding the likelihood of
the ML estimates. In addition, the scope of our experi-
ments surpass that of our prior works, where only very
small regions of the pose space were explored, and the
feature models were not suited to larger environments.
However, important issues are raised in this work with

respect to the density of training samples. In order to
capture aspects of the scene that change significantly,
one must sample at higher densities. One possible so-
lution is to select the robot’s viewing direction before
sensing in order to take in more stable parts of the envi-
ronment (for example, point the camera at the farthest
wall). Our future work is addressing some of the issues
raised here, as well as expanding the approach to much
larger environments.
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