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Abstract— We consider the problem of Simultaneous Localiza-
tion and Mapping (SLAM) using the Rao-Blackwellised Particle
Filter (RBPF) for the class of indoor mobile robots equipped only
with stereo vision. Our goal is to construct dense metric maps
of natural 3D point landmarks for large cyclic environments
in the absence of accurate landmark position measurements
and motion estimates. Our work differs from other approaches
because landmark estimates are derived from stereo vision and
motion estimates are based on sparse optical flow. We distinguish
between landmarks using the Scale Invariant Feature Transform
(SIFT). This is in contrast to current popular approaches that rely
on reliable motion models derived from odometric hardware and
accurate landmark measurements obtained with laser sensors.
Since our approach depends on a particle filter whose main
component is the proposal distribution, we develop and evaluate
a novel mixture proposal distribution that allows us to robustly
close large loops. We validate our approach experimentally
for long camera trajectories processing thousands of images at
reasonable frame rates.

I. INTRODUCTION

In robotics, the problem of Simultaneous Localization and
Mapping (SLAM) is that of estimating both a robot’s location
and a map of its surrounding environment. It is an inherently
hard problem because noise in the estimate of the robot’s pose
leads to noise in the estimate of the map and vice versa. In
general, SLAM algorithms must address issues regarding sen-
sors, map representation and robot/environment dynamics. A
probabilistic framework is necessary for combining over time
the incoming sensor measurements and robot control signals.
There are two such frameworks popular in the SLAM commu-
nity, the Extended Kalman Filter and the Rao-Blackwellised
Particle Filter. We choose to study the latter since it scales
better for maps with large numbers of landmarks and it handles
incorrect data associations more gracefully.

In this paper, we present 0 SLAM (where o stands for
stereo), a novel model of the RBPF applied to the SLAM
problem for robots with stereo vision. Our work is unique
because it uses a video stream of stereo images as the only
input while it achieves results whose accuracy is comparable
to those of other models that rely on laser and odometric
measurements. We derive an estimate of the robot’s motion
from sparse visual measurements using stereo vision and
multiple view geometry techniques. We construct dense metric

(b)

Fig. 1. The RWI B-14 robot that we used for data collection seen from (a)
far and (b) closeup view of the stereo camera.

maps of 3D point landmarks identified using SIFT [1] whose
invariance to changes in image translation, scaling and rotation
makes it suitable for reliable, but not perfect, data association.
SIFT’s invariance properties along with our novel mixture
proposal distribution improve the robustness of our filter in
closing large loops. We show that our model works well
in environments with large changes in illumination, image
blurring, glass doors and many large windows. Finally, we
show that we can trivially compute 2D occupancy grids, if
desired. Such grids are useful for robot path planning and
obstacle avoidance.

In comparison, previous work on SLAM has focused pre-
dominantly on robots that utilize 2D occupancy grid maps [2]
and use laser sensors [3], [4]. Laser has high depth resolution
providing accurate measurements of landmark positions but
its low perceptual resolution makes it difficult to distinguish
between different landmarks. We focus on using vision as
the sensing modality. Vision can be used to construct 2D
occupancy grids [5] and as such one might believe that the
application of laser-based SLAM algorithms could be used
just as well with stereo vision. However, as shown in part (b)
of Figure 4 its low depth resolution makes it very difficult to
directly apply such occupancy grid methods to vision-based
SLAM. Instead, we focus on learning maps of 3D natural
landmarks identifiable by their appearance in images. We
demonstrate how we can trivially construct the 2D occupancy
grids as a by-product of our algorithm.



Our work is analogous to that of [6] because we learn a
similar type of map. However, their approach maintains only
the maximum likelihood estimate of the camera pose predicted
by robot odometry and corrected using visual information, that
is 3D points identified using SIFT. They exploit odometry
information to achieve better data associations. This approach
has only been shown to work for small environments and
trajectories. A similar method that constructs metric maps
is presented in [7]. Their algorithm is a direct extension
of FastSLAM [4] for visually guided robots that identifies
landmarks using SIFT. They construct maps similar to those
in [6]. They present results that are promising but preliminary
and only for 1 particle in which case their approach closely
resembles the original work of [6]. Some recent work is also
focused on the use of monocular cameras. For example, [8]
uses a particle filter with a single camera and robot odometry
to map small indoor environments. They construct topological
maps and identify visual landmarks using SIFT. In this case,
occupancy grid maps would have to be constructed using a
different sensor, i.e., laser, in which case using vision for
SLAM seems unnecessary since this can be achieved using the
laser data in the first place. Work on monocular SLAM that
does not depend on robot odometry has been presented in [9].
Their approach is mostly tailored to real-time performance.
In consequence, they identify visual landmarks using salient
visual features that are not necessarily distinctive enough for
operation in large environments. This approach is also based
on the Extended Kalman Filter that is inefficient because the
filter scales quadratically in the number of landmarks.

This paper is structured as follows. We first present an
overview of Bayesian filtering applied to SLAM and its RBPF
approximation. We then focus on the details of our vision-
based SLAM presenting our map representation, observation
and motion models. We discuss our novel mixture proposal
distribution and give the complete algorithm for our particle
filter. We then provide experimental results that support our
hypothesis in terms of robot localization accuracy and our
ability to construct occupancy grid maps for navigation. We
conclude by discussing directions for future work.

II. SLAM USING THE RAO-BLACKWELLLIZED PARTICLE
FILTER

Formally, let s; denote the robot’s pose at time ¢, m; the
map learned thus far and z; = {s;, m:} be the complete szate.
Also, let u; denote a control signal or a measurement of the
robot’s motion from time ¢ — 1 to time ¢ and z; be the current
observation. The set of observations and controls from time

0 to t are denoted by z* and u’ respectively. Our goal is to
estimate the density
p(stamt|ztvut) :p(xt|zt7ut) 1

That is, we must integrate the set of observations and controls
as they arrive over time in order to compute the posterior
probability over the unknown state. Applying Bayes rule on

Equation 1 and making the Markov assumption we get [10]
p(z¢|2,u') = Bel(zy) =

np(ztlxt)/p(xtIUt,xt-l)p(art_llztfl,ut*l)dxt_l =

np(zelee) / Pl 21)Bel(zo_1)dzry (2)

where 7 is a normalizing constant.

Equation 2 allows us to recursively estimate the posterior
probability of maps and robot poses if the two distributions
p(zt|zy) and p(a¢|ug,zi—1) are given. These distributions
model the observations and the state’s evolution respectively.
For SLAM, an analytical form for Bel(z;) is hard to obtain
and as such the Bayes filter is not directly applicable. Instead,
it was noted in [4], [11] that if we estimate the modified
posterior, p(zt|zt,u!), then we don’t have to integrate and
we can obtain a solution efficiently using a Particle Filter.

Particle Filtering is a general method for approximat-
ing p(z'|zt,u') using a set of m weighted particles,
{z® w®},_; . ,,. The system is initialized according to
p(zo) and the recursive update of the Bayes filter pro-
ceeds using a procedure known as sampling-importance-
resampling [12].

A major caveat of the standard PF is that it requires a very
large number of particles as the size of the state increases.
Since for SLAM the state of the system includes the map
that often has tens of thousands of landmarks, the PF is not
applicable from a practical point of view. The method of Rao-
Blackwellization can be used to reduce the complexity of the
PF by factoring the posterior [11], [13]

p(s',mel2t ut) = p(s[2',ut) [ [ p(me(R)|s', 2, uf)  (3)
k

where m; (k) denotes the k-th landmark in the map. We use a
standard PF to estimate p(s’|z%,u’) and an EKF for each of
the k& landmarks.

III. VISION-BASED SLAM

In this section we present our model for vision-based
SLAM. We first describe how we represent maps that are
central to our method. Next we define observations and
how we compute the observation likelihood, followed with
a description of our motion model based on visual odometry.
We then discuss our mixture proposal distribution and give the
complete particle filter algorithm.

A. Map Representation

We construct maps of naturally occurring 3D landmarks
similar to those proposed in [6]. Each landmark is a vector
| = {PY 0% a,s, f} such that P¢ = {X¢ VY ZC} is a
3-dimensional position vector in the map’s global coordinate
frame, C' is the 3 x 3 covariance matrix for P“, and o, s, f
describe an invariant feature based on the Scale Invariant
Feature Transform [1]. Parameter « is the orientation of the
feature, s is its scale and f is the 128-dimensional key vector
which represents the histogram of local edge orientations.



B. Observation Model

Let I/ and I denote the right and left gray scale images
captured using the stereo camera at time t. We compute
image points of interest from both images by selecting max-
imal points in the scale space pyramid of a Difference of
Gaussians [1]. For each such point, we compute the SIFT
descriptor and record its scale and orientation. We then match
the points in the left and right images in order to compute
the points’ 3D positions in the camera coordinate frame.
Matching is constrained by the stereo camera’s known epipolar
geometry and the Euclidean distance of their SIFT keys.
Thus, we obtain a set Oc = {01,09,---,0,} of n local
landmarks such that o; = {POL7 = {XOL],,Yoe, ZOLj},pgj =
{ro;: o5y 1}, CF s, f} where pl = {ro;,c,;,1} is the
image coordinates of the point and j € [1---n].

An observation is defined as a set of k correspondences
between landmarks in the map and the current view, z; =
Ut...e{li <> 0;} such that i € [1..m] and j € [1..n], where m
is the number of landmarks in the map and n is the number
of landmarks in the current view. Each local landmark either
corresponds to a mapped landmark [, or has no corresponding
landmark, denoted by the null correspondence ;. We compare
the landmarks’ SIFT keys in order to obtain these correspon-
dences just as we did before during stereo matching. There are
no guarantees that all correspondences are correct but the high
specificity of SIFT results in a reduced number of incorrect
matches.

A pose of the camera, s;, defines a transformation [R, T,
from the camera to the global coordinate frame. Specifically,
R is a 3 x 3 rotation matrix and 7" is a 3 x 1 translation
vector. Each landmark in the current view can be transformed
to global coordinates using the well known equation

P =R, P. +T,, (4)

Using Equation 4 and the Mahalanobis distance metric
we can define the observation log-likelihood, log p(z¢|my, s¢).
Special consideration must be taken when computing this
quantity, particularly where large numbers of feature obser-
vations, with significant potential for outlier correspondences,
are present. We compute it by summing over the feature
correspondences:

log p(z¢|my, ) = Zlogp(okﬂk,st) ®)
K

The log-likelihood of the k-th observation is given by

log p(ok|lk, s¢) = —0.5min(T}, (P —PE)T'S™H(PS - P))

(6)

where the correspondence covariance S is given by the sum of

the transformed local landmark covariance C’OLk and the map
landmark covariance Cf':

S =R, CLRT +Cf. (7)

t

For the null correspondence, S is assumed to be zero.
The maximum observation innovation 7j is selected so as
to prevent outlier observations from significantly affecting the

observation likelihood. However, given the potentially large
numbers of correspondences, even with a reasonable setting
for T} (in our case, 4.0), the magnitude of log p(z¢|m¢, s¢) can
be such that raising it to the exponential results in zero values.
Since particle weights are computed partially based on the
observation likelihood, it is important that the computation of
this quantity is robust to outliers. We have shown in previous
work [14] that this can be done correctly and without loss of
generality by subtracting the observation likelihood of the least
likely particle. Similarly, in the same work [14], we provide
details as to how a landmark is evaluated as stable enough to
be added to the map.

C. Motion Model

An essential component to the implementation of RPBF
is the specification of the robot’s motion model, u;. In the
vast majority of previous SLAM work, this has been a
function of the robot’s odometry, i.e., wheel encoders that
measure the amount the robot’s wheels rotate that can be
mapped to a metric value of displacement and rotation. Noise
drawn from a Gaussian is then added to this measurement
to take into account slippage as the wheels rotate. Odometric
measurements of this type are limited to robots moving on
planar surfaces. We want to establish a more general solution.
Thus, we obtain u; measurements by taking advantage of
the vast amount of research in multiple view geometry [15].
Specifically, it is possible to compute the robot’s displacement
directly from the available image data including an estimate
of the uncertainty in that measurement. This is often known
as visual odometry [16], [17], [18], [19], [20].

Let I; and I;_; represent the pairs of stereo images taken
with the robot’s camera at two consecutive intervals with
the robot moving between the two. For each pair of images
we detect points of interest, compute SIFT descriptors for
them and perform stereo matching, as described earlier in
section III-B, resulting in 2 sets of landmarks L;_; and L;. We
compute the camera motion using the Levenberg-Marquardt
(LM) algorithm minimizing the re-projection error of the 3D
coordinates of the landmarks [15]. Let 5; be the 6-dimensional
vector §; = [roll, pitch,yaw,Ti1, Ty, T31] corresponding to
a given [R, T]. Our goal is to iteratively compute a correction
term y

s =35 —x ®)

such as to minimize the vector of error measurement e, i.e.,
the re-projection error of our 3D points. For a known camera
calibration matrix K, € is defined as

€ P} —K(RP, +T)
e pi — K(RP, +T)

e=| . | = ) 9
e pf — K(RPf | +T)

Given an initial estimate for the parameters, we wish to solve
for x that minimizes e, i.e.,

[ AJI ]XZ [ ;d } s (JTT+ M)y =JTe+xd (10)



where J = [%—;’, cee %—Z“]T, is the Jacobian matrix, I is the
identity matrix and d is an initial solution that in this case is set
to zero rotation and translation. The LM algorithm introduces
the variable A that controls the convergence of the solution
by switching between pure gradient descent and Newton’s

method. As discussed in [21] solving Equation 10 minimizes

Y

The normal equations can be solved efficiently using the SVD
algorithm. A byproduct from solving Equation 11 is that we
also get the covariance of the solution in the inverse of J7.J.

17 = el + A?||x — dlf?

IV. THE PROPOSAL DISTRIBUTION

The correct performance of a particle filter highly de-
pends on the selection of proposal distribution. Most SLAM
approaches using the RBPF depend on a proposal that is
derived from the motion model using the observations to offset
the difference between the proposal and target distribution.
The FastSLAM 2.0 algorithm [22] employs a proposal that
also takes into account the most recent observation via the
linearization of the motion and observation models allowing
them to compute the proposal in closed form. In contrast, [8]
uses a mixture proposal that combines hypotheses from the
motion and observation models weighted according to either
the motion or observation models (such a mixture proposal has
been previously used for global localization and tracking [23],
[24]). However, computing the particle weights according to
two different models generates an inconsistent set of hypothe-
ses that in [8] is not treated in a principled way.

We also use a mixture proposal generating hypotheses from
both the motion model and a second distribution that depends
on the latest observation and learned map thus far. We compute
the weights correctly avoiding the problem described in [8].

Formally, our proposal distribution is given by:

Q(5t|5t7172taut) =

¢leobal(5t|zt7 mt—l) + (1 - ¢)Q77L(5t|5t—17 Ut) (12)

where ¢ is known as the mixing ratio. Sampling from the
motion model, p(s¢|s;—1, ut), is straightforward as all particles
from time £ — 1 are updated using our estimate of the camera’s
motion, u;, with noise added drawn from our confidence on
this estimate given by (J7.J)~!. In order to sample from
Qglobal, WE generate it by taking advantage of the 3D geometry
of our map and camera configuration. .
Specifically, let z; be the current observation and myjl be
the map of the ith particle learned up to time ¢ — 1. Given the
correspondences in z;, we can compute the transformation that
relates the two coordinate frames using weighted-least squares.
The procedure is similar to that described in section II-C
except that in this case instead of minimizing the re-projection
error of the 3D points, we minimize their Euclidean distance in
3D [25]. The problem with this approach is that it is sensitive
to outliers that are present in our data association. To overcome
this problem, we employ a RANSAC type approach where
we select subsets of the point correspondences and compute a

candidate robot pose for each. We have found that generating
as few as 200 candidate poses, s¢, ., is sufficient for good
localization given our noisy observations. For computational
efficiency, we only compute the candidate poses with respect
to the map of the most likely particle at time ¢ — 1.

In order to sample from gg1q;, We evaluate, using Equa-
tion 5, the probability of our latest observation given each
candidate pose. We then fit a Gaussian distribution to these
data points such that:

global = Nglobal (,u» E)Sfl...zoo (13)

We compute the weight for the ¢ — th particle correctly by
evaluating the ratio of the target and proposal distributions,

p(zt|8/§i)7m£i) )p(s;(i)|s§?1,ut)
S)p(s' s 1 ue)
(14)

Wi = (0) (@)
¢le0bal(8/t |Zta my_ ) + (1 -

Each of the distributions involved is a Gaussian that we have
already described how to compute. One should notice that the
weights for the particles are equal to the observation likelihood
scaled by the ratio of the probability of the pose under the
motion model and the weighted sum of the probability under
the motion model and the global distribution. That is those
particles that are supported by both models are given weights
that are mostly proportional to the observation probability
while those that disagree are penalized.

Finally, our empirical results show that using a constant
mixing ratio tends to generate noisy robot trajectories. This is
the result of the bad data associations in our observations.
Also, the observations are often dominated by landmarks
that were seen most recently, biasing the global distribution
towards the most recently added landmarks. This potentially
prohibits the closure of large loops. To correct this, we are
varying the mixing ratio as a function of the ratio of old
landmarks to total landmarks observed at time ¢. An old
landmark in our case is defined as one that has not been
observed for longer than 2 minutes. Using a variable mixing
ratio, we rely on the standard proposal in the short term and
the mixture proposal for closing loops. In the next section, we
give the complete algorithm for our particle filter.

V. THE 0 SLAM ALGORITHM

Algorithm 1 gives the filter update steps for cSLAM. The
input to the algorithm is the set of particles from the previous
time step, the current observation and the visual odometry
estimate. It starts by computing the ratio of old to total number
of landmarks. If this number is larger than 30%, poses are
sampled using the mixture proposal otherwise all poses are
sampled from the motion model. In the latter case the particle
weights are just proportional to the likelihood of the obser-
vation given by Equation 5. If the mixture proposal is used,
then the weights are computed according to Equation 14. As
we mentioned earlier, for efficiency, we only compute qgiopai
with respect to the most likely particle from the previous time.
If we do not wish to make this approximation then we must
move the code that estimates gg0pq; inside the last for loop,
i.e., compute it for every particle.



Algorithm 1 update(P;_; = {x(i)7w(i)}ztz_li')'"M,zt,ut)

if old landmarks > 30% then

total landmarks

use_mixture = true

PML = most likely particle from P;_;

{n), hq(g)}j:l’“_,N = generatePoses(PML, z;)
fori=1toi=N do
compute weight A = p(h®|z,, mME)

end for _
Estimate Nyjopar (1, $) from {hU),th)}
end if
{Compute the new set of particles}
if use_mizture == false then

fori=1toi=Mdo
sample s;(l) from p(s;(l)|s,@1,ut)
compute wgi) = p(zt|s;(i), mgi_)l)
end for
else
fori=1toi= M do
Draw a random number, rand, from a uniform distri-
bution
if rand < ¢ then

sample s;(i) from p(s;(i)|s£?1,ut)
else ‘
/(2
sample st( ) from Nyiobai (1t, )
end if .
Compute wt(z) using Equation 14
end for
end if
Normalize particle weights
Resample

Update particle maps using z;

VI. EXPERIMENTAL RESULTS

We have implemented the o SLAM algorithm for our
mobile robot seen in Figure 1. The robot is equipped with a
PointGrey Research Bumblebee stereo vision camera mounted
on a pan-tilt unit. The robot also has an on-board Pentium-
based computer and no other functioning sensors.

For our experiments, we manually drove the robot inside
two adjacent rooms, 10 x 16 meters, in our laboratory and
around a large corridor. In both cases we collected the stereo
images for offline processing. For the first data set, we fol-
lowed a star-like exploration pattern starting from the middle
of one room, exploring one corner at a time and returning back
to the center to close the loop. We collected a total of 8500
frames and we processed all of them. The total length of the
trajectory is 110 meters. For the corridor data set, we collected
and processed 3400 frames for a trajectory of over 100 meters.
The data we collected was challenging from a computer vision
point of view because they include many frames with blurring
caused by the uneven floor surface and people walking in front
of the camera. Also the existence of large windows on the
North, East and South walls of the rooms and at the four

Fig. 2. Sample frames from our test sequence. A scene with (a) lots of texture
that is good for localization; (b) excessive brightness and blurring caused by
(c) uneven floor surface and a person walking in front of the camera
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Fig. 3. The localization error for the filter using just the standard proposal,
mixture proposal (with a variable mixing ratio) and the raw visual odometry
estimates. Note that the robot starts at the left-most node in the plot and
finishes at the right-most node.

corners of the corridors cause large portions of some image
frames to be saturated with bright light. Figure 2 shows a small
sample of good and bad frames in our test sequences.

Part (a) of Figure 4 shows a top-down view of the 3D
landmark map, learned using o SLAM with 500 particles for
our first data set. We used a mixing ratio that varied between
0 and 50% according to the age of the observed landmarks.
The map shown is that of the most likely particle at the end
of the trajectory. The map has a total of 80,000 landmarks.
Part (b) of Figure 4 also shows the occupancy grid associated
with this particle, constructed using the method given in [5],
and the dense stereo images returned by the stereo camera.
The resolution of the grid cells is 15 x 15¢m.

In order to measure the accuracy of o SLAM, we have
measured ground truth pose data for 5 different locations. The
starting location is node 1 and each of the corners in the first



room are labeled nodes 2,3,4 and 5. We have labeled these
locations on the learned map shown in part (b) of Figure 4.
The plot in Figure 3 shows the average position error at each
node for the raw visual odometry, the particle filter using the
standard proposal and o SLAM using the mixture proposal.
One can see that the latter outperformed the other methods.
In fact, the average error, over all nodes, using the mixture
proposal is approximately 15cm; using the standard proposal it
is 25c¢m and using just the raw visual odometry measurements
it is 159¢m. Also, using o SLAM the robot closed a large loop
(25 meters long), going from node 1 to the room on the left
and back to node 1 achieving an accuracy of approximately a
factor of two better than using the standard proposal.

Part (c) of Figure 4 shows the 3D landmark map learned
using the second data set and 500 particles. This map has
approximately 22, 000 landmarks. For this experiment we also
used a varying mixing ratio similarly to the first experiment but
we only closed the loop once at the end of the trajectory. The
error was less than 1m for an environment with very unreliable
visual odometry due to the lack of texture and excessive light
at the ends of the corridors. Part (d) of Figure 4 shows the
occupancy grid corresponding to the most likely particle at
the end of the trajectory.

Figure 5 shows the processing time for each frame of
the two room image sequence running on a Pentium Xeon
3.2 GHz computer. The average time over all frames is 1.5
seconds. A large part of this, 0.35 seconds, is spend on SIFT
extraction and matching. The time increases as the number
of landmarks in the map increases because it takes longer to
compute data associations, update the map for each particle
and copy maps between particles. For efficiency, we are orga-
nizing all SIFT keys using a kd-tree data structure as originally
suggested in [1]. In addition, in order to perform efficient
copying of maps between landmarks, we have implemented
the tree data structure introduced in [4]. We should emphasize
that the latter data structure is only used to efficiently copy
the 3D landmark maps and not the occupancy grids. We only
construct the latter to demonstrate that we can. In fact, we
could manage the grids efficiently by implementing the data
structure introduced in [3] but we have not done this yet. There
are frames when the processing time increases well above the
average time; this is due to instances when a large number of
particles and in effect their maps must be pruned during the
resampling step because of their low likelihood.

VII. CONCLUSION

We have presented 0. SLAM, an approach for vision-based
SLAM using a stereo camera and the Rao-Blackwellised
Particle Filter. We have proposed a specific model that does
not use mechanical odometry information and operates using
as the only input a video stream of stereo images. We derive
our motion model from the sparse optical flow of image points
identified using SIFT. We have proposed a novel mixture
proposal distribution that allows us to robustly close large
loops. We have shown that we can construct accurate metric
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Fig. 5. Plot of the average processing time vs frame number for 500 particles
using o SLAM.

maps of 3D point landmarks and 2D occupancy grid maps
from dense correlation-based stereo.

Finally, we should note, that our model is derived from
the start for unconstrained 3D camera motion. In this paper,
we have presented only results for planar robot motion for
which we have ground truth data allowing us to evaluate its
performance. However, we have evidence [23] that the system
can solve for 6 degrees of freedom and we are currently
exploring methods for evaluating it more precisely. Possible
applications are a wearable stereo camera and the construction
of volumetric representations of indoor spaces.
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Fig. 4. Examples of the maps learned with 0 SLAM for (top row) two adjacent rooms size 16 X 10 meters and (bottom row) a corridor. Parts (a) and (c)
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