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Abstract

This work addresses the problem of robot exploration. That is, the task of auto-
matically learning a map of the environment which is useful for mobile robot navi-
gation and localization. The exploration mechanism is intended to be applicable to
an arbitrary environment, and is independent of the particular representation of the
world. We take an information-theoretic approach and avoid the use of arbitrary
heuristics. Preliminary results are presented and we discuss future directions for
investigation.
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Bayesian Exploration for Mobile Robots

1. Introduction

In order for an autonomous robot to operate in its environment, it requires knowl-
edge of its task and how it can be accomplished. An essential aspect of this knowledge
is a map. That is, information which enables the robot to estimate where it is, where
it’s going, and how to get there. To date, many researchers have devoted a signifi-
cant amount of work to solving these three tasks, given a prior map [22, 38, 16, 33].
A few have tackled the problem of constructing a map semi-autonomously[47, 24],
and some have attempted the map acquisition problem in a fully autonomous setting
[20, 8, 31]. Of the latter works, the majority commit to a particular sensing modal-
ity (sonar) and assume that the world can be represented as a 2-D piecewise-linear
map.

We will define exploration as the process of discovering those aspects of the world
that allow us to reliably model its structure and/or behaviour. Like scientific in-
vestigation, exploration in the real world never terminates. However, for practical
reasons, the robot can cease exploration when it has acquired sufficient information
to perform its tasks with a certain measure of confidence.

Our work aims to develop a framework for autonomous exploration that is both
domain- and sensor-independent. We accomplish this task by posing the problem as
one of optimizing the robot’s knowledge or information about the world. Most prior
work in this domain is constrained to sonar sensing or, where vision sensors are used,
a restricted class of models [33, 48, 10, 51, 2]. We seek to generalize the models
employed, facilitating a wider domain of environments, and aim to address the open
questions posed by other entropy-motivated approaches to exploration. The principle
contribution of this work will be a theory of exploration which accommodates multiple
hypotheses about the correct representation of the world and takes into account the
uncertainty associated with the robot’s actions.

The balance of this paper will divided as follows: First, we will define the problem,
taking into account the question of sensor and odometric uncertainty. The problem
statement will be followed by a review of prior work on the exploration problem. We
will then present our approach to the problem, and provide some preliminary results.
Finally, we will look at future directions for the work.

2. Problem Statement

Our goal is to develop a robust and efficient method for autonomous exploration
of an arbitrary, unknown environment. The task is rife with uncertainty– odometry
and sensor readings are unreliable and hence we must take these factors into account
when planning where to move the agent. In this sense, our goal is to maximize our
certainty about the world. However, the problem is further compounded by other
factors, such as task-specific requirements (for example, a prori needs for higher
accuracy in certain parts of the world), safety issues, the limitations imposed by any
particular choice of model of the world, and questions of computational tractability.
Finally, in light of our definition of exploration, we will also require criteria that
allow us to determine when exploration can be terminated. It should be clear that
any robust and efficient solution will require careful consideration of all of these issues.
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3. Previous Work

In this section we consider previous work that is relevant to the exploration prob-
lem.

3.1. Approaches in Computational Geometry. Problems in computational
geometry (CG) often provide insight about related real-world tasks. For example,
sonar maps of the real world can sometimes be approximated in terms of polygons,
and hence the body of research concerning polygons is immediately applicable. An
important question that can be answered in the context of CG is that of complexity.
If we know that a particular CG problem is difficult to solve, then we can conclude
that the related real-world problem is at least as hard. Furthermore, if the world can
be exactly expressed in terms of geometry, then the exact solution to a particular
problem represents a lower bound on what must be accomplished in the presence
of uncertainty, providing us with a measure by which to evaluate algorithms that
tackle uncertainty. We first consider the Watchman Route Problem, whose solution
represents the minimum distance a robot must travel in order to discover the world,
as represented by a polygon.

S

Figure 1. A polygon with inscribed shortest watchman route for
starting point S. The route is marked by the bold line.

The Watchman Route Problem is related to the Art Gallery Problem [28, 35].
Chin and Ntafos define a watchman route for a polygon P as a closed walk in P such
that every point of P is visible from some point in the walk [7]. Given a starting point
S, and a polygon P, the watchman route problem is to find a shortest watchman route
for P that starts at S (Figure 1). Chin and Ntafos demonstrate that the problem
is NP-hard if the given polygon has holes. However, the problem is much simpler
for polygons without holes, and Chin and Ntafos develop an O(n) algorithm for an
orthogonal polygon [7]. In other work, they provide an O(n4) algorithm for simple
polygons [6]. Carlsson, et al have developed an O(n6) algorithms for solving the
problem when S is unspecified.

For the purposes of exploration with a single robot, one is faced with solving the
watchman route problem in the face of only partial knowledge. There is a class of
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navigation algorithms, known as Bug algorithms, which deal with the task of finding
a path from a start point to a goal in an environment populated with unknown
obstacles [25, 29]. A Bug-style exploration strategy involves traveling through the
world, searching for obstacles and circumnavigating obstacles as they are encountered.
Taylor and Kriegman employ such an approach, building a set of local maps based
on a set of visible landmarks [46]. Such topological representations of the world are
considered in the next section.

A second class of CG problems which are relevant are Geometric Probing prob-
lems. Geometric probing considers problems of determining geometric structure from
the results of a measuring device or probe. In the context of exploration, geometric
probing is relevant because results from the problem domain specify lower-bounds
on the number of discrete sites which must be sampled in order to completely re-
construct the environment. In many cases, the probing models reflect the idealized
behaviour of real-world sensors, such as laser-range points, calipers, or the absorption
of X-rays. Skiena provides a broad survey of the wide range of probing models and
related results [41].

Of significant interest is the finger probe model, introduced by Cole and Yap [9].
A finger probe measures the first point of intersection between a directed line and
an object. Such a model is equivalent to a perfect sonar measurement or laser-range
sample. Cole and Yap show that 3n probes are sufficient to completely determine a
convex polygon. However, their probing model is insufficient for determining arbi-
trary polygons. Alvizos, et al modify the probing model developed by Cole and Yap,
allowing the probe to follow an arbitrary curve and returning not only the point of
intersection with the polygon but also the surface normal at the point of intersection
[1]. Under this probing model, the authors show that 3n − 3 probes are sufficient
to probe a polygon with n non-collinear edges. Of related interest is the problem of
geometric testing, or object verification problem: given a set of objects and a target
object, find the minimum set of probes which allow the target to be discriminated
from all other objects in the set. Romanik provides a detailed survey of results in
geometric testing [32].

Finally, Rekleitis and Dudek have developed a multi-robot collaborative algo-
rithm for exploring a simple polygon [31, 30]. In this work, two robots commence
exploration by positioning themselves at two adjacent vertices of the polygon and
sweep the free space by traveling along edges while maintaining a line of sight. The
traversal of the entire polygon results not only in a description of the polygon, but
a topological representation which is based on a planar decomposition (for example,
triangulation) of the polygon.

3.2. Topological Representations and Autonomous Map Construction.
One of the earliest works that aims to address the autonomous exploration problem is
that of Kuipers and Byun [21, 20]. That work models the world as a graph embedded
in a 2-dimensional environment populated with point and line features. The goal is
to automatically extract a topological representation where vertices are located at
local maxima of a measure of distinctiveness on a subset of the sensory features, and
vertices of the graph are recognized by a local signature of the environment. The
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pure metric pure topological

Figure 2. The spectrum of environment representations.

vertices are connected to one another by arcs which define local control strategies
for traveling between the vertices, and vertex recognition is verified via a rehearsal
procedure. This approach to map-making has been duplicated somewhat by Choset’s
Generalized Voronoi Graph (GVG), which also deals with the particular issues of
defining the local control mechanisms for moving from vertex to vertex [8].

Another topological approach that is of relevance to the work presented here is
that of Tagare, et al [44]. In that work, the world is represented topologically as a
set of places, each of which is characterized by a particular visual appearance. The
problem of localizing in such a world is that of recognizing a known place based on
the current input image.

The advantage of employing a topological representation is that it side-steps the
difficult problem of maintaining the robot’s pose in an absolute or global reference
frame. Furthermore, it introduces a level of abstraction which can be employed for
high-level inference (for example, understanding the command “Go to the living room
via the kitchen.”) One difficulty, however, with the approaches taken by Kuipers and
Byun and Choset is that the robot is forced to operate in the context of the extracted
topology, which may not be adequate for tasks that require specialized knowledge of
places that are not well-represented by the graph. Simhon and Dudek resolve this
issue by defining a set of metric maps, or islands of reliability in the neighbourhoods
of distinctive places. The distinctive places themselves are selected on a measure that
combines task-specific information with a quantitative measure of how well the robot
is likely to be able to localize in the neighbourhood, selecting the best sensor for the
task in the given neighbourhood.

Figure 2 summarizes the spectrum of representations that we have considered
thus far, ranging from purely metric maps to purely topological maps. Clearly, any
useful representation requires both metric and high-level information. Dudek has
proposed that these requirements impose a hierarchy of representations that increase
in generality as one ascends the hierarchy [14].

3.3. Inverse Problem Theory and Bayesian Analysis. Before we move on
to the problems of map-building and exploration, we first examine the theory that
motivates most current approaches to these tasks.

We commence by first defining some notation; the pose q of the robot represents
the global parameters that capture its (zero-th order) state in the world. Typically,
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q is defined over a configuration space C which defines the set of admissible poses.
Furthermore, an observation z is defined as the output of a sensor and belongs to the
space Z of admissible sensor readings. For example, z might represent the rasterized
set of gray-scale pixel intensity values in the image acquired by a camera. Finally,
we will define a map m in the abstract as a method for predicting observations
based on the pose of the robot.1 A map will typically be coupled with a set of prior
observations.

Tarantola’s definitive work provides our foundation for inverse problem theory
[45]. Inverse problem theory concerns the problem of inference based on observation.
We proceed using the example of robot localization. The image z that the robot
encounters from position q can be expressed by the relationship

z = F (q) (1)

The localization problem is then that of inverting Equation 1:

q = F−1(z) (2)

and thus inferring q from z. The problem is ill-posed in the sense of Hadamard,
however, since there are no guarantees that F (·) is one-to-one. That is, more than
one pose can observe the same sensor image.

Inverse problem theory comes to the rescue by taking the principle of least com-
mitment. Where F (·) is not one-to-one, several different poses may be likely for a
given image. Therefore, we represent the pose of the robot as a probability density
function over C, given the input image z and a map m: P (q|z, m).

The question of how to compute P (q|z, m) analytically is not clear. However, if
enough of the important parameters of the world are known (for example, lighting
conditions, surface geometry and reflectance properties, etc), then we can develop a
theory that predicts our observation given the pose of the robot, P (z|q, m). Clearly,
the map m embodies those properties of the world which enable us to predict z
given q. For this reason, Bayesians usually parameterize m as m and refer to it as a
model. In fact, the pose q represents a subset of these parameters. The reader should
be aware, however, that parameterizing m implies that a particular computational
framework has been selected. By referring to m in the abstract, we refer to a member
of the universe of all computational methods for computing z from q, without explic-
itly selecting, for example, explicit object models, regularization of observations in
n-space or spline interpolation. The issue of choosing between computational mod-
els is addressed by MacKay [26]. Callari and Ferrie also deal with this issue in the
context of object recognition, since the objects themselves represent a set of abstract
classes[5].

1Consider the notion that a road map provides us with a method for predicting upcoming
intersections, or a topographical map allows us to predict the slope of the trail ahead. The utility
of a (human-readable) map as a localizer is rooted in our remarkable ability to rapidly search for
places whose predictions match our observations.
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Figure 3. Monte Carlo simulation of a robot undergoing an uncertain
motion. Uncertainty in the robot’s heading yields a distinctly non-
Gaussian distribution. Figure courtesy Ioannis Rekleitis

How can we use P (z|q, m) to infer pose? Simple application of Bayes’ Law reveals
that

P (q|z, m) =
P (z|q, m)P (q|m)

P (z|m)
(3)

where P (q|m) refers to the a priori probability density function for q (i.e. where the
robot thinks it is prior to taking the observation), and P (z|m) is referred to as the
evidence for the map. The latter term is often assumed to be uniformly distributed
and is treated as a normalizing constant. Note that if the prior and the evidence are
uniformly distributed then the most likely pose of the robot, given the observation,
is that which maximizes the likelihood of the observation z itself.

Computationally, the solution of Equation 3 for the maximum-likelihood pose
of the robot may be difficult– the underlying probability density function may be
multi-modal, complicating simple gradient-ascent methods. Furthermore, it is often
necessary or desirable to compute a compact representation for the PDF. There are
a variety of computational tools that can be employed to represent a probability
density function. Two of the more common tools are mixture models and Monte
Carlo simulation.

Mixture models represent a probability density function as a finite sum of ele-
mentary PDF’s (for example, a Gaussian function)[19, 13]:

P (x) =
1∑
wi

∑
wiPi(x) (4)

where each wi represents a weighting term to be applied to elementary PDF Pi(x).
Such an approach is useful for representing multi-modal data. However, mixture
models often require a priori knowledge of the number of modes of the data.

Monte Carlo simulation is a computational approach wherein the probability den-
sity function is represented implicitly by the set of outcomes of repeated stochastic
simulation. For example, the PDF for the pose of a robot can be represented by a set
of weighted particles, each of which is located at a particular point in the configura-
tion space and weighted by the likelihood that the robot is located at that particular
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point. Figure 3.3 depicts a Monte Carlo simulation of the resulting pose of a robot
undergoing an uncertain forward motion. Note that uncertainty in the robot’s head-
ing leads to a distinctly non-Gaussian pose distribution. In the limit, as the number
of particles goes to infinity, the distribution of particles exactly represents the PDF
of the robot’s pose. The advantage of Monte Carlo simulation is that no a priori
requirements are imposed on the structure of the PDF. The disadvantage is that the
number of particles required to adequately represent the PDF increases exponentially
with the dimensionality of the parameter space. Furthermore, faithfully simulating
the stochastics of a physical system is a difficult problem in and of itself. Neverthe-
less, Monte Carlo simulation has been applied successfully to the problems of robot
localization and visual tracking[10, 18].

Armed with Bayes Law, and the useful related tools, we now turn our attention
to the task of constructing a map of the environment. Note that we are not yet
discussing the problem of data acquisition or exploration, but considering what to do
once the data has arrived.

3.4. Map-Construction in the Presence of Uncertainty. As a robot con-
structs a map of its environment, it must execute actions and take sensor readings.
Each of these tasks involves a certain measure of uncertainty which can corrupt the
resulting map, and since the uncertainty of the robot’s actions compounds with each
successive execution, the map eventually becomes useless (not to mention that the
robot becomes hopelessly lost).

While it may seem like a classic chicken-and-egg problem, it is still possible to
construct a useful map by posing the problem in a probabilistic framework. In this
context, the problem of representing the world becomes one of selecting the repre-
sentation which is most probable.

The most straightforward approach to probabilistic map construction is that of
employing a Kalman Filter (KF) to update both the robot position and positions of
landmarks (see, for example, [23] and [17]). While the concepts are straightforward,
the difficulty posed by the Kalman Filter is that all uncertainties are embodied as
Gaussian distributions, whereas the evolution of the actual uncertainty of the pose of
the robot may be non-Gaussian. In addition to Gaussian assumptions, the Kalman
Filter assumes that the problem is linear. The Extended Kalman Filter (EKF) ac-
commodates non-linear formulations by first linearizing in the neighbourhood of the
maximum-likelihood estimate via a Taylor series expansion. The difficulty with this
approach is that linearization can cause the filter to diverge from the correct solution.

In order to avoid the problems encountered due to assumptions of linearity and
Gaussian uncertainty, we turn to a more general framework for posing the map-
building problem, as suggested by Thrun et al [47], (see also [48, 49]). Thrun’s
work takes advantage of a Markov assumption and Bayes’ law [45] to show that,
given a sequence of actions and observations as input data, the most probable map
is that which maximizes the likelihood of the data. The method for producing the
most probable map (and simultaneously the most probable set of robot motions) is
based on the Expectation Maximization or EM-algorithm[12].
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The EM-algorithm is an iterative hill-climbing strategy in likelihood space which
operates in two phases, an Expectation phase, and a Maximization phase. Thrun’s
rendition of the EM -algorithm poses the E -step as that of computing the most likely
set of robot actions assuming the current estimate of the map is correct. The M -step
then computes the maximum likelihood map from the robot’s observations, assuming
the pose estimates from the E step are correct. The process continues iteratively until
the map converges to a local maximum.

In more recent work, Thrun suggests an incremental method which adjusts the
map as data arrives in real-time [50]. The method exploits a Monte Carlo repre-
sentation of the pose of the robot and distributes the computed error in robot pose
backwards in time over the prior observations. Such an approach maintains a set of
good starting points for gradient ascent in likelihood space, which can be computed
rapidly, foregoing the cost of searching the entire space of maps for the maximum
likelihood estimate.

The EM approach has also been exploited by Dellaert in the context of computing
Structure from Motion (SFM) using a camera [11]. This work is significant in that
it can be exploited as an alternative to the map representation we will employ in
Section 5.2. It should be noted that both the Kalman Filter and Markov-based
approaches to map-building are motivated by previous successes in robot localization
[22, 42, 16, 10].

The algorithm for map construction presented by Thrun is satisfying in that
no specific representation of the underlying uncertainties is required. However, this
approach assumes that the robot has already performed the task of exploration– the
collection of observations from which to build the map. It makes no attempt to
instruct the robot about where to next collect an observation. We will consider this
task in the next section.

3.5. Exploration. Having considered the tasks of localization and map construc-
tion, we turn at last to the problem of exploration.

The majority of exploration approaches apply heuristics to incrementally discover
unexplored space [4]. The difficulty with these methods is exactly that they are
heuristics– no consideration is given to the quality of the results, and the results
themselves are impossible to validate or evaluate.

This problem has been addressed by several authors in the context of Taran-
tola’s inverse problem theory and Fedorov’s theory of optimal experiments [45, 15].
MacKay’s series of papers addresses the problem of Bayesian interpolation– interpo-
lating a function from sample observations in the presence of observational uncer-
tainty [26, 27]. MacKay exploits Shannon’s entropy [36] to show that the optimal
place from which to obtain the next sample is that where the prediction of an ob-
servation is least certain. In other words, one should take observations at the places
where the “error-bars” on the interpolating function are largest. While the appli-
cation of MacKay’s work is only to 1-d functions, the fundamental theory behind
his derivation will be preserved when we derive our own objective function for data
selection.
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Whaite and Ferrie employ MacKay’s framework in their work on active explo-
ration for the purposes of obtaining object models [51, 52]. They show that the best
location from which to take an observation is that which maximizes the prediction
variance, based on the covariance matrix of the set of model parameters describing
the object. They formulate a decision process which is based only on a local measure
of the model uncertainty, directing the agent to take sensor readings as it climbs (and
simultaneously suppresses) the uncertainty gradient.

Arbel and Ferrie exploit this same idea in solving the object recognition problem,
directing the sensor to places which will maximize the expected reduction in entropy
of the probability distribution over possible object classes [3, 2]. In this case the
authors benefit from the fact that the “entropy map” can be constructed in advance,
given the known universe of objects.

Finally, the information theoretic approach has also been applied to the problem
of robot navigation. Roy and Thrun define an objective function for navigating to
a goal position in a known world that simultaneously aims to minimize the entropy
of the probability density function defining the pose of the robot and to reach the
goal along a reasonable path [34]. The resulting path planning method is referred to
as “coastal navigation” for its tendency to direct the robot along the boundaries of
obstacles, where the certainty of the robot’s pose can be improved.

The approaches taken by MacKay and Whaite rely on several important assump-
tions and approximations. First, it is assumed that the pose of the robot is known
exactly. No indication is given as to how to deal with the uncertain outcomes of the
robot’s actions. Second, it is assumed that the distribution of the model parameters
is Gaussian, which facilitates an analytic solution for the best observation site. As
Whaite only applies the Gaussian assumption in order to approximate the local gra-
dient in the uncertainty space and make a local decision about where to move next,
this assumption seems reasonable. However, the more critical assumption imposed
by the theory is that the model, or representation, can exactly model the real-world
phenomena that give rise to data. If this assumption is incorrect, then the agent
can be directed to repeatedly collect samples from sites that the model cannot rep-
resent, leading to a sub-optimal improvement in the representation. Alternatively,
over-confidence in the model can lead the robot to ignore regions which are poorly
represented. MacKay refers to this issue as the “Achilles’ Heel” of the approach. One
of the goals of this work is to develop a framework for accommodating a representa-
tion’s inability to completely capture the data.

4. Developing a Theory of Exploration

Having considered extensively the prior work on the topic of exploration and
environment representation, we will proceed to develop the theory that motivates
our proposed approach. We will employ an information-theoretic approach to the
problem, also taking into account any task-specific requirements and accounting for
uncertainty in the pose of the robot.
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4.1. A Bayesian Approach. Given a map m, and a sensor reading z, Equa-
tion 3 computed the probability of the pose q of the robot using Bayes’ Law:

P (q|z, m) =
P (z|q, m)P (q|m)

P (z|m)
(5)

where P (z|q, m) represents our predictive model or theory that allows us to mea-
sure the likelihood of an observation based on what we know about the world.

In the context of exploration, a naive approach to data collection might be to
move to places or select actions such that the uncertainty in the pose of the robot is
maximized. This would amount to selecting the pose that maximizes the expected
posteriori entropy H of P (q|z, m):

H = −
∫

z∈Z

P (q|z, m) log P (q|z, m)dz (6)

It is interesting to contrast this idea with the navigational approach of Roy and
Thrun, who move toward a goal in the known world by minimizing the entropy of
the posteriori pose distribution. In fact, maximizing H is incorrect for exploration
because it depends on fixed properties of the environment– different places in the
world may look alike and no matter how many observations we take our uncertainty
about being in one place versus another identical place should remain fixed.

Instead, we are more interested in the likelihood of our map given our current
observation:

P (m|q, z) =
P (z|q, m)P (m|q)

P (z|q)
(7)

Equation 7 relates the likelihood of the map in the face of an observation taken
from a particular pose to the likelihood of the observation and our a priori measure
of the probability of the map. Note that P (z|q) is independent of q in the absence
of a map.

The information theoretic approach to exploration is to find the pose q̂ which max-
imizes the expected reduction in entropy of the probability distribution P (m|q, z).
We state the expected change in entropy in terms of what MacKay defines as cross-
entropy G:

G = −
∫

m∈M

P (m|q, z) log
P (m)

P (m|q, z)
dm (8)

and

E[G] =

∫
d∈Z

Gdd (9)

where P (m) represents the prior for m before the arrival of the datum z; it may
depend, however, on a set of previously collected data.

Evaluating Equation 8 requires an integration over the space of possible maps.
This poses a difficulty. In contrast to methods which construct parametric models
based on the data [51], we have not yet instantiated our maps in terms of an explicit
set of parameters. In fact, we have consciously avoided any such instantiation in order
to allow for generality– the parameters may be implicitly encoded by an inaccessible
black-box or may be embodied solely in the set of prior observations.

Proof version: March 21, 2003 12



Bayesian Exploration for Mobile Robots

At this juncture, we arrive at a crossroads for continued investigation. On the one
hand, we can insist that our maps be parameterized. This leads to the formulations
proposed by MacKay and Whaite et al, which are simplified by computing the first-
order Taylor series expansion about the maximum-likelihood map m̂ and assuming
that the likelihood space is normally distributed in the neighbourhood of m̂. One
possible avenue for consideration is the explicit parameterization of m as the actual
set of observations. This yields a parameterization m ∈ Z × Z × . . . × Z where the
observation space is crossed with itself once for each datum. The author is currently
investigating whether Equation 8 can be simplified in this context.

Alternatively, we can work with the text of MacKay’s observation that we should
collect data “at the point where the error bars on the interpolant are currently
largest”. The implication is that at these points the ability of the map to predict
the data is weakest. Mathematically, however, the author has been unable to derive
an explicit relationship between the change in entropy of the model and the entropy,
or uncertainty, of the predicted observation. In fact, the nearest derivation suggests
quite the opposite– it is more informative to take a low-noise observation than one
that is noisy. This apparent contradiction stems from the fact that the model may
be quite certain that the prediction arises from a noisy process, whereas it may be
highly uncertain in predicting a datum for a process which is known to be relatively
noiseless. The conclusion that we are forced to draw is that this second line of attack
is theoretically unsound.

Finally, we must consider the uncertain pose of the robot. In this case, we cannot
select the best pose to navigate to. We should instead select an action a to be
executed by the robot so as to maximize the expectation of E[G] given a over the
configuration space C:

H(a) = E[E[G]|a] =

∫
q∈C

P (q|a)E[G]dq (10)

Let us assume for the moment that the configuration space of the robot is dis-
cretized onto a finite grid. If we restrict the possible actions to a small, discrete set
(such as, move forward 10cm, or turn left 10o), then it should be possible to formu-
late the task as a reinforcement learning problem [43]. In this context, the task is to
compute a policy π that selects actions in order to maximize the expected reward,
or certainty, accrued to the robot over the long-term. The principal difficulty with
this approach is that tractability also requires a discretization of the robot’s state of
knowledge, which may not be straightforward. This is a question for future research.

4.2. Adding an Action-Cost Measure. The formulation, as presented, directs
the robot to the place (or to execute an action) which is globally optimal for data
collection. However, the globally optimal action may in fact require the robot to
travel a significant distance, or put itself at risk due to environmental hazards. This
fact has two effects– first, the physical cost of executing the optimum action may be
too high, and second, the robot may become hopelessly lost in traveling to its goal.
To accommodate this difficulty, we present a new objective function

F (a) = λH(a) + (1− λ)c(a) (11)

Proof version: March 21, 2003 13



Bayesian Exploration for Mobile Robots

where c(a) represents the cost of executing action a and λ is a parameter determining
the desired relative weight between the expected change in entropy H and c. It is not
clear at this juncture whether H(a) sufficiently penalizes highly uncertain actions.
This is also a question for future investigation.

5. Preliminary Results

5.1. Simulation. In this section we consider the state of the work to date. Our
first instantiation of the exploration method simulates a robot in a polygon-shaped
environment (Figure 4(a)).

Figure 4. Simulation results. a) the robot’s environment. b) the
termination of exploration.

We model the environment as an occupancy grid, where each grid point (x, y)
holds the value pocc(x, y), the probability that position (x, y) is intersected by an
edge of the polygon. The occupancy grid is initialized to 0.5 everywhere, indicating
the state of no information, and the robot is initialized to pose (30, 30), in the lower
left corner of the map.

Exploration is performed by first identifying a set of candidate poses which are
eligible for exploration (those which are known to be reachable based on the current
state of the occupancy grid), and using the occupancy grid to simulate the PDF of a
simulated sonar scan at each position. The pose whose sonar PDF has highest entropy
is selected as the optimal pose from which to take the next scan. Figure 4(b) shows
the state of the occupancy grid after 30 iterations of the algorithm. Unfortunately,
at this stage, the model repeatedly selects the same position from which to scan and
the algorithm terminates. The reasons for termination are various– we concluded in
Section 4.1 that the heuristic is incorrect. Furthermore, MacKay’s argument that
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Figure 5. Original scene and synthesized landmarks.

insufficient models lead to suboptimal behaviour also applies, since we have modeled
the sonar scanner heuristically.

While the simulated exploration of Figures 4(a) and 4(b) demonstrate some of
the important issues faced by information-theoretic exploration, each of which must
be addressed in the course of this work, it is of significant interest to pursue a richer
sensing model. We now turn our attention to the task of modeling the probability
density function of a vision sensor in a real world setting.

5.2. An instantiation of P (z|q, m). Ultimately, our goal is to automate the
acquisition of training inputs for a map-learning mechanism, such as the one discussed
in Section 3.4. Fundamental to this mechanism is the development of the theory,
that is, the ability to compute P (z|q, m). We will discuss here our prior work in the
domain of landmark learning and introduce an instantiation of P (z|q, m) which can
be applied in a Bayesian context to robot localization[38, 39, 40]. It should be noted
that the prior work cited does not employ a Bayesian framework– the formulation
presented here is, as yet, unpublished.

Our goal is to compute the probability density function of a camera image z,
given the pose q of the robot, and a map m. Our approach makes two simplifying
assumptions– first, rather than generate the entire image z, we concentrate only on
generating the image in the neighbourhood of a set L = {l1, l2, . . . , ln} of visible
salient points or landmarks [37]. Second, the probability density function of an ob-

served landmark is normally distributed about a maximum likelihood observation l̂i
which is computed explicitly from q and m.

The function that generates l̂i is based on an unsupervised learning mechanism
which constructs the most likely image position and appearance of a landmark from
a set of prior observations (obtained in the process of exploration). Furthermore,
a cross-validation scheme is used to infer the covariance matrix of the distribution.
Therefore, the covariance captures at once the stochastic nature of the sensor and
the inadequacies of the model. Figure 5(a) depicts a scene whose landmarks were
learned by uniform sampling of the pose space. Figure 5(b) depicts a synthesized
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image from a nearby pose in the pose space– only the image in the neighbourhood
of each landmark has been reconstructed.

Given a method for computing l̂i, we can formulate P (z|q, m) as a mixture of
Gaussian PDF’s, each corresponding to a landmark in the image :

P (z|q, m) =
1

N

∑
i

P (li|q, mi) (12)

where P (li|q, mi) corresponds to the Gaussian probability density function of land-
mark li, given the pose and the learned predictor for that landmark mi.

One further point of justification must be made for our choice of a mixture model
in Equation 12. Whereas a correct formulation would be to compute a joint dis-
tribution multiplicatively, we have not considered the possibility of outliers in the
landmark recognition phase, which can obliterate the results due to limited machine
precision. While a summation model prevents such catastrophes at the cost of higher
uncertainty in the PDF, it also imposes the incorrect assumption that the landmark
observations are disjoint.

Figure 6(b) depicts P (q|z) over a 2m by 2m pose space in the laboratory setting
depicted in Figure 6(a). The mode of the distribution predicts the pose of the robot
to be at position (131, 29) whereas the actual robot position was (130, 22).

6. Future Directions

We have established a framework for autonomous information discovery in the
context of robotic exploration. There are a wide variety of issues that require further
discussion.

• The most significant issue is that of tractability. The integrals that must be
solved in order to compute the entropy function require simplification. It is
likely that we can exploit the mixture model formulation we have proposed
in order to derive an analytic solution.

• The lack of explicit models is a handicap to the derivation and must be
addressed. The question of model parameterization remains complicated,
given the computational model that we have presented.

• The model we have proposed for modeling P (z|q, m) in the image domain re-
quires further investigation, particularly for more complicated configuration
spaces.

• More work is required in the context of evaluating the expected entropy
given the uncertainty in the robot’s pose. This is necessary for evaluating a
set of actions, as opposed to choosing a single vantage point from which to
obtain a sensor reading. The question of whether the reinforcement learning
paradigm can be applied will be considered.

• We have not yet addressed the inference of geometric constraints in the
context of navigating through the world– presumably these can be added to
the cost function. However, just as we are aiming to reconstruct the image
function, it should be possible to reconstruct the sonar function.
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Figure 6. Laboratory scene and probability density function of robot
pose. The area depicted corresponds to the 2−D configuration space
of the robot. Darker regions correspond to more likely poses, given the
image.
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• A separate, yet equally interesting issue for future work has to do with
the natural topology of the environment which is expressed by the set of
landmarks that are currently in view. That is, different regions of space give
rise to a different set of visible landmarks. Clearly, there are opportunities
for path planning and inference based on navigating between the sets of
visible landmarks. This approach lies very much in the domain of a hybrid
representation between a set of topological places and local metric maps.

7. Conclusions

One of the most significant gaps in the domain of robotics research is that of
autonomous exploration. Whereas the domain of machine learning has studied how
to make sense of the data, very few researchers have considered the task of actually
acquiring the data that optimally facilitates the task at hand. Our work aims to
fill this gap in a way that is at once theoretically sound and practically feasible.
We have proposed a theory of exploration which is derived from information theory.
Specifically, the robot is directed to acquire sensor readings from places where its
ability to model the world is weakest. We have established preliminary results which
validate in part the feasibility of our goals and highlight some of the important
difficulties that must be overcome. Our future work will continue to seek a marriage
between a robust theory of exploration and the practical issues of implementation.

Proof version: March 21, 2003 18



Bibliography

[1] P. Alevizos, J.D. Boissonnat, and M. Yvinec. On the order induced by a set of rays: Application
to the probing of non convex polygons. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 202–207. IEEE Press, 1989.

[2] Tal Arbel. Active Object Recognition Conditioned by Probabilistic Evidence and Entropy Maps.
PhD thesis, McGill University, Montréal, Québec, January 2000.
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