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Abstract

Simultaneous localization and mapping is an important
problem for autonomous planetary rovers and other space
vehicles. While many authors have addressed the SLAM
problem, few have done so in the context of producing large-
scale maps in real time using vision. This paper is con-
cerned primarily with the issues presented by the large num-
bers of candidate features obtained from vision sensors, and
the implications for data association. We present a Rao-
Blackwellised particle filter (RBPF) SLAM implementation
that employs a stereo camera and the SIFT feature detector,
and demonstrate that we can build maps of unknown en-
vironments with an extensive number of visual landmarks.

1 Introduction

Autonomous planetary rovers that rely on vision sensing
require the ability to construct dense visual representations
of their environment for the purposes of both navigation and
data collection. A central problem to constructing these rep-
resentations is that as a mobile rover explores it accumulates
error in its pose estimate, and subsequently its acquired map
becomes inaccurate. This problem, generally referred to
as simultaneous localization and mapping, or SLAM, has
been widely studied and a variety of solutions have been
proposed (for example [3,5,8,9]). However, there are a lim-
ited number of vision-based solutions that address real-time
mapping, and representations that can scale up to thousands
of mapped features. This paper presents an approach and
experimental results for achieving SLAM solutions in real-
time over long trajectories (73m or more), resulting in maps
consisting of many thousands of landmarks.

Our approach to solving the SLAM problem with a vi-
sion sensor is to combine a Rao-Blackwellised particle filter
(RBPF)-based approach to mapping [8], coupled with effi-
cient data structures developed by Montemerlo, et. al. for

Figure 1. Left: A rendering of the map from a
sensor’s-eye view. Right: an image of the lab
from a nearby position.

representing a distribution over maps (referred to as Fast-
SLAM [7]), and fast data association techniques for match-
ing the relatively unambiguous feature descriptors obtained
using the SIFT feature detector [6].

RBPF-based SLAM solutions operate by maintaining
multiple map hypotheses, each associated with a stochas-
tically sampled trajectory through the environment. The
complete set of sampled trajectories and inferred maps ap-
proximates the probability distribution of maps conditioned
on the vehicle’s actions and observations, p(M|A, Z),
where M = {my,ma,...,my} is the set of maps, each
consisting of a set of probability distributions describing
landmark positions, A = {u1,us,...,u,} are the con-
trol inputs to the vehicle (that is, the vehicle’s actions), and
Z ={z1,%2,...,2zm are the vehicle’s observations of the
world (for brevity, we assume actions and observations are
interleaved). One of the important contributions of the Fast-
SLAM algorithm is the data structure it employs to share
information between trajectory samples with common his-
tory. This facilitates real-time performance of the algorithm
as the trajectory length grows.

As an exploratory vehicle moves through the environ-
ment, the number of landmarks in its map can grow to num-
ber in the hundreds of thousands. This is especially true for
vision-based mapping, where feature detectors might typi-



cally return 500 feature observations in a single image. This
poses a difficult problem for solving the data association
problem, where a single feature observation might require
comparison with all of the landmarks in the map. Such
an extensive comparison might be required when extracted
features are generic, without any uniquely defining charac-
teristics (such as those typically employed in mapping al-
gorithms employing laser range sensors). Furthermore, the
computed data association is rarely unique, and often highly
ambiguous. While FastSLAM allows for multiple data as-
sociation hypotheses, these can reduce the robustness of the
particle filter and potentially lead to sample starvation.

In vision, however, there is usually a great deal of con-
textual information associated with a feature that can con-
strain data association, and reduce the cost of matching. In
our work, we employ the SIFT feature descriptor, which
provides descriptions of feature observations that have been
shown to be very robust for feature correspondence. In ad-
dition, we apply a kd-tree over the space of SIFT features
to facilitate approximate nearest-neighbor lookups in time
logarithmic in the number of visually distinct landmarks.

The main contributions of this paper are two-fold. First,
we present an implementation of FastSLAM which is based
on vision-based sensing, rather than traditional range sens-
ing with a laser. Second, we present methods for perform-
ing rapid data association of hundreds of landmark obser-
vations in a single image against a database of tens of thou-
sands of mapped landmarks. These results leverage the
strengths of particle filter-based approaches for uncertainty
estimation (such as the possibility of multi-modal and non-
Gaussian estimates), with data association techniques that
were previously only applied to Kalman-filter based estima-
tors (for example, [9]). Furthermore, where previous im-
plementations of the FastSLAM algorithm have generally
employed sensors with a wide field of view, our experimen-
tation demonstrates the performance of the algorithm using
sensors with a comparatively narrow field of view. Finally,
we demonstrate experimentally that robust SLAM solutions
can be achieved in real-time over long trajectories (more
than 70m).

The remainder of this paper is structured to provide
a coverage of the strengths and weaknesses of current
methods, elaborate on the details of our implementation,
present and discuss experimental results, and finally discuss
planned improvements.

2 Related Work

There is a significant body of literature on SLAM using
the Extended Kalman Filter and its inverse, the Extended
Information Filter [3,5, 12]. These approaches model the
posterior distribution over maps as a unimodal Gaussian
distribution. Of particular interest is the view based ap-

proach of Eustice, et. al. [3], which enables constant-time
filter updating without significant sparsification approxima-
tions. However, a significant difficulty with a view-based
approach is that the resulting map does not lend itself well
to evaluation or human inspection, a strong prerequisite for
an exploratory vehicle.

Two map representations are popular in the literature,
landmark based [7,9, 11] and occupancy grid based [2, 4].
Occupancy grids are effective for dense but ambiguous in-
formation while landmarks are more suited to sparse but
distinguishable features. Very impressive occupancy grids
have been produced online by recent scan matching tech-
niques which also use particle filters for pose estimation
[4] [2]. Landmark and vision-based approaches have also
performed well in the past, as in [9]. In the latter case, a
reasonably small environment was successfully mapped by
using a Kalman Filter and assuming independence between
landmark and pose estimates. For large environments, this
approach is likely to be overconfident and lead to filter di-
vergence.

In related work, we have also applied our approach to
mapping where control and odometry information is un-
known. In Sim, et. al., we demonstrated an approach to
solving the SLAM problem using the approach outlined
here, coupled with a visual odometry estimate for motion
estimation [10].

3 Simultaneous Localization and Mapping

This paper represents map estimation as the evolution
of a Rao-Blackwellised particle filter [8]. In this context,
the trajectory and landmark distribution is modeled as a dy-
namic Bayes network, where trajectories are instantiated as
samples, and the landmark distribution can be expressed an-
alytically for each trajectory. At time ¢, let s; denote the ve-
hicle pose, m; the map learned thus far and z; = {s;, m:}
be the complete state. Also, let u; denote a control signal
or a measurement of the vehicle’s motion from time ¢ — 1 to
time ¢ and z; be the current observation. The set of obser-
vations and controls from time 0 to ¢ are denoted as 2* and
u® respectively. Our goal is to estimate the density

p(stamt|zt7ut) :p(xt|zt7ut) (1)

It has been demonstrated elsewhere that p(s;, my|zt, ut)
can be approximated by factoring the distribution in terms
of sampled trajectories s;, and independent landmark distri-
butions conditioned on the sampled trajectories [8]:

p(sta mt|2ta ut) ~ p(8t|2t7ut) Hp(m(k)‘8t7 Zta ut) (2)
k

where m(k) denotes the k—th landmark in the map. That is,
we instantiate a set of samples s;, propagate them according
to u?, and construct maps for each according to z°*.



A simplistic approach to running an RBPF for SLAM
would yield an update complexity of O(M N), where M is
the number of particles at each step and N is the number of
landmarks. However, Montemerlo et al. introduced in their
FastSLAM work a tree-based structure which refines this
complexity to O(M log N') by sharing landmark estimates
between samples [7]. Each sample in the filter will share un-
altered landmark estimates with its ancestor particles (those
landmarks that have not been observed from the time of the
ancestor to the present). Each landmark observation results
in a landmark being copied from its parent and updated but
the rest of the tree remains the same.

3.1 Data Association

In an unmodified natural environment, landmarks are
difficult to uniquely identify. This problem is known as
data association or correspondence and incorrectly match-
ing observations to landmarks can lead to inconsistencies in
a map. Stereo vision can quickly provide 3D information
and when coupled with a scale-invariant feature transform
(SIFT) detector [6] it can provide distinct landmarks. SIFT
features are desirable as landmarks because they are some-
what invariant to image scale, rotation and translation as
well as to illumination changes and affine or 3D projection.
This combination can result in many viable landmarks from
an unaltered environment.

4 Implementation
4.1 State Representation

We describe samples of the vehicle’s pose with the vector
st = [x,y, 0], situated in a plane .

At each time step, the NV pose samples are propagated ac-
cording to the motion model p(s¢|s¢—1, ut), which is user-
defined. Over time the distribution of samples can become
non-Gaussian, and even multi-modal. The noise model we
apply is designed to take a conservative approach to esti-
mating the possible drift in the robot’s pose over time, while
keeping in mind that noisier models require more particles
to prevent starvation as the underlying pose distribution dis-
perses.

The specific action sequence is dependent on the robot’s
exploration policy. For this paper, we drive the robot by
hand, and infer the robot’s actions from odometry measure-
ments between observations. For each action the filter pro-
duces a new generation of particles that inherit properties
from the previous generation. The set of hypothetical tra-
jectories executed by the robot is represented by this tree

'Our current work is aimed at extending our results to a full 6-DOF
motion model.

of particles. After taking an observation (described in the
next section), each particle in the current generation of par-
ticles is weighted according to the probability of the current
observation z;, conditioned on that particle’s trajectory:

p(2elsie, M) (3)
Eexp(—0.5A2T%71Az) “4)

w;

where Az = h(s;t) — 2z, h(-) is a generative model of
the observations as a function of pose, X is the sum of the
observation covariance and observed landmark covariance.
The particle is weighted by how well the current observa-
tion is consistent with the map constructed from that parti-
cle’s trajectory. The weights are subsequently normalized
across the population of samples, and then sampled proba-
bilistically with replacement to produce the next generation
of particles. Should any particle not be chosen for advance-
ment it is pruned and all particles with no children are then
recursively removed from the tree. If an insufficient num-
ber of particles are used, or resampling takes place too fre-
quently, this can lead to starvation as hypotheses are pruned.

4.2 Sensing and Data Association
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Figure 2. Each particle has an associated
map, organized by SIFT descriptor. Simi-
larly, each SIFT descriptor might have mul-
tiple landmark estimates, each spatially dis-
tinct.

We employ a data structure similar to that described
in [7] as a map representation. Each particle has associated
with it a set of landmark estimates, described by Gaussian
distributions. However, in the vision-based case, we take
advantage of the descriptive power of the SIFT transform
(described below), enabling us improve the quality of data
association. In this formulation, each particle maintains a
list of SIFT IDs, and these IDs in turn point to a linked list
of one or more 3D landmark estimates (Figure 2). Note that
one SIFT ID can point to multiple landmarks— landmarks
that have similar appearance but are spatially distinct.



We are using a Point Grey Research BumbleBee stereo
camera for our primary sensor, and extract SIFT features
using a difference of Gaussian detector [6]. The features’
partial invariance to image scale, rotation, translation and
3D or affine projection are what make them desirable land-
marks. Each SIFT feature has a 36 dimension identifier, or
key, associated with it and this matching is based on finding
a suitably distinct match. We perform a linear search of the
keys in the left image for each key in the right. The two
keys with the smallest Euclidean distances from our target
key are found and if the ratio of best and second best dis-
tances is below a set threshold (currently 0.6) it is consid-
ered a good match. That is, for keys k;1,, k2 and k.., in the
left and right images, according to subscripts, a successful
match of k;; to k,. satisfies the property
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Once a 3D feature is extracted from the stereo pair, we
determine if this feature corresponds to one we have seen
before. Our approach to data association is depicted in Fig-
ure 3. To efficiently store and access what can quickly be-
come a large number of keys we use a kd-tree. The kd-tree
facilitates nearest-neighbor matching in time logarithmic in
the size of the tree, and has been demonstrated to be reliable
for object recognition tasks [1]. The disadvantage of using
a kd-tree is that it can sometimes produce not the nearest
match but a close match. We maintain a single tree for the
sensor and associate an arbitrary integer ID with each SIFT
identifier we add. New keys are considered to be candidate
keys and are not passed as an observation to the particle fil-
ter until they have been observed for a sufficient number of
frames. Since we do not currently use negative informa-
tion to remove erroneous landmarks from the maps this is
an effort to limit their number.

Each particle’s map is indexed by a set of IDs associated
with SIFT descriptors and each node contains a linked list
of landmarks sharing that descriptor. Multiple data associ-
ations can be entertained by the filter because each particle
determines the specific landmark to which an observation
corresponds. The number of landmarks associated with an
ID is typically quite small as shown by Table 1. A par-
ticle’s weight is updated for a given landmark observation
according to Equation 4 by first selecting from the linked
list for the matched landmark ID the landmark estimate that
is closest to the observed point in the global frame of refer-
ence. The maximum distance threshold for this comparison
is based on an approximation of the camera’s error and if
multiple landmarks fall within this range the closest is cho-
sen. Clearly since the filter is initiated without a map any
observation with an unknown ID or a 3D position which
does not match is treated as a new landmark.

In the following section we describe our experimental
results.

5 Experimental Results

For the purposes of our experiments, we used an RWI
B14 robot with a BumbleBee stereo head from Point Grey
Research. The robot was driven through a laboratory envi-
ronment, and the robot collected 5000 images along a tra-
jectory of approximately 74m. We ran the system using
100 particles, which enabled a frame rate of approximately
2.1Hz (Figure 5). Table 1 describes at approximately 1000
time-step intervals the average number of landmarks asso-
ciated with each map, the total distance traveled, the total
number of SIFT id’s, the time step in history at which the
filter converges to a single map, and the total number of
landmark instances in the system (these can outnumber the
product of samples and mean landmarks as many instances
are not promoted to full landmarks until they have been ob-
served at least 3 times).

Table 1. Map summary (see text for details).

Time Avg. Dist. Tracked Filter Total
racke
LMs trav- Sift conver- LMs
per eled gence
Fea-
Samp. (m)

tures

5043 31577 | 72.64 | 29462 | 4847 108636
4009 | 25300 | 59.66 | 23766 | 4000 84146
2987 18830 | 42.02 | 17826 | 2889 70369
2043 12840 | 27.05 | 12338 | 1989 60871

1021 6083 14.04 | 5922 919 23688

Figure 4 depicts the map constructed for the maximum-
likelihood particle at the end of exploration, beside a map
computed using dead reckoning alone. The filter-based map
is clearly more accurate in that it correctly captures the rec-
tilinear alignment of the three rooms traversed by the robot.

6 Discussion

Among the key observations from our experiments is
that we are able to successfully map a large environment
in real-time. At the end of map construction, we are match-
ing 29,462 SIFT features, and each map consists of more
than 31,000 landmarks, with a total of only 109,000 land-
marks shared across all the maps. As the maps grow in
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Particle 1 will match three of the four
observations to existing entries in its
map. The matches will increase the
particle’s weight by an amount deter—
mined by the quality of each match.

Particle 2 will match only one of

the observations. By creating three
new entries this particle will likely be
weighted much lower than the one
above.

Figure 4. Left: The constructed map for the best sample at the end of exploration. Yellow: maximum
weight trajectory. Pink: Dead reckoning trajectory. Grid lines indicate 25cm intervals. Right: the
constructed map using dead reckoning.
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Figure 5. Per-frame computation time in mil-
liseconds. The mean frame rate is 2.1Hzon a
3.2GHz Intel Xeon Processor

size, only a small slow-down in computation time is exhib-
ited. More importantly, relative to dead-reckoning, we have
demonstrated that our resulting map is more accurate. This
can be observed in the fact that the three rooms observed
by the robot are correctly aligned, as well as the fact that
when the robot returns to the first room it correctly locates
the position of the door into the third room (near the center
of the constructed map).

7 Conclusion

We have presented an implementation of an RBPF-based
SLAM algorithm using a vision-based sensor. The key goal
of our work is to facilitate scalable maps that incorporate
large numbers of visual landmarks (on the order of hundreds
of thousands). The primary contributions of this work are
the facilitation of vision-based sensing in association with
a particle filter that supports multiple data associations. We
have also experimentally demonstrated the success of the
system on a real robot.

Among the goals of our work are the problem of con-
structing visual representations of very large environments
(on the order of 100m in diameter), and in particular in out-
door environments. We also hope to extend this work to full
6-DOF representations, which will be better suited to space
vehicles and exploration over rough terrain. We believe that
the data structures developed in this work can facilitate the
construction of maps of this size, and our ongoing goal is to
accomplish this task experimentally. One outstanding ques-
tion for our work is how to reliably cull SIFT features that
are rarely observed. This features tend to clutter the kd-tree
and deletion requires costly re-balancing in the tree. An
outstanding question is whether loop closure can be suc-
cessful in very large environments, and how many particles
might be required to successfully close the loop. Finally,
we are interested in developing approaches to autonomous
exploration based on particle-based representations of the

environment.
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