
Stabilizing information-driven exploration for bearings-only
SLAM using range gating

Robert Sim
Department of Computer Science

University of British Columbia
2366 Main Mall,

Vancouver, BC V6T 1Z4
simra@cs.ubc.ca

Abstract— This paper examines the problem of information-
driven exploration for the purposes of simultaneous localization
and mapping (SLAM) with a bearings-only sensor. In recent
work, we have demonstrated that employing an information-
driven approach to exploration with an extended Kalman filter
(EKF) can drive drive the robot to locations in the world where
filter updates are ill-conditioned and linearization constraints
are violated, potentially destabilizing the filter, and increasing
the probability of divergence from the true state estimate. In
this paper, we demonstrate an information-driven approach to
exploration that preserves the stability of the EKF and produces
maps that are significantly more accurate than a conventional
information-driven approach. Our method is based on range-
gating observations so as to avoid potentially destabilizing up-
dates. We provide simulated experimental results demonstrating
the superior performance of our approach over simple outlier
gating and over heuristic-driven exploration.

Index Terms— Bearings-only SLAM, Exploration, Extended
Kalman Filter

I. INTRODUCTION

This paper considers the problem of optimally controlling
a mobile robot as it explores an environment and constructs a
map. Until only recently, the control problem has been largely
ignored in favor of solving the underlying map construction
problem, usually referred to as simultaneous localization and
mapping (SLAM). The key problem in SLAM is that a robot’s
actions and observations are noisy, and as such the robot can
never know its precise position, or the precise positions of
features in the environment. Solutions to SLAM generally
amount to simultaneously maximizing the probability of the
robot’s trajectory estimate and inferred landmark positions,
conditioned on its actions and observations.

With recent successes in formalizing the SLAM problem,
and the development of convergent solutions, it now becomes
feasible to inquire as to how a robot should behave as it
explores. In particular, we are interested in optimizing the
quality of the map that the robot produces. Very few authors
have considered this problem to date. The widely-accepted
method is to apply an information-optimal approach to data
acquisition, driving the robot and its sensors to locations
that maximize the expected information to be gained from
acquiring an observation at that location [1]–[4].

In recent work, we demonstrated that for a robot with a
bearings-only sensor (that is, a sensor which can observe

only the direction to features of interest, and not the distance,
one such sensor being a monocular camera), the performance
of an information-optimal approach to exploration suffers
compared to other (theoretically sub-optimal) approaches.
Furthermore, we identified the reason for this poor perfor-
mance as being the fact that information-optimal viewpoints
also tend to be locations where the EKF update is ill-
conditioned and linearization constraints are more likely to be
violated. Intuitively, the robot is driven to locations where the
uncertainty of its observation is high (such as moving close
to uncertain landmarks), but these regions of high uncertainty
are also regions where small changes in observation will
result in large changes to the robot’s state (both map and
pose) estimate. This poses a significant problem for the EKF,
as incorporating observations that lie outside the (potentially
narrow) operating point of the filter’s linearization can result
in divergence.

In our previous work, we presented simulation results
indicating the poor performance of an information-optimal
exploration policy compared to a heuristic policy that simply
traced the Voronoi graph of the estimated map [5]. Despite
the fact that tracing the Voronoi graph is sub-optimal in the
information theoretic sense, this heuristic policy succeeded
by maintained a ‘safe’ distance from all of the landmarks in
the map, thereby preventing catastrophic divergence.

There are two weaknesses to our previous work. First,
despite the fact that the Voronoi-based approach achieves
good results, it is based on a sub-optimal heuristic, and as the
robot incorporates new observations into its map, the Voronoi
graph can change significantly, resulting in an erratic explo-
ration trajectory. Second, one might argue that an information-
driven approach to exploration would be more successful by
applying simple outlier gating to the observations.

This paper has two main contributions. First, we demon-
strate that simple outlier removal does not significantly im-
prove the performance of an information-driven exploration
policy. Second, we present an alternative approach to obser-
vation filtering, which we refer to as range gating, that, when
used in conjunction with an information-optimal exploration
policy, out-performs a Voronoi-based approach to exploration.
These results are important for devising autonomous systems
that require accurate maps, and in particular when the best



map possible is required within certain time constraints. We
will present experimental results demonstrating the perfor-
mance of our range-gated approach in a simulated environ-
ment.

The remainder of this paper proceeds as follows. First, we
will examine the bearings-only SLAM problem and present
the conventional information-driven approach to exploration.
This will be followed by a presentation of our range gating
method. We will conclude with a series of experiments
illustrating the approach and a discussion of the results.

II. RELATED WORK

The bearings-only SLAM problem was considered by
Deans and Hebert from the context of filter design and
selection [6]. Recent work, such as that by Kwok and
Dissanayake and Solà et al. has focused on the landmark
initialization problem, as incorrect initializations can cause
filter divergence [7], [8].

A related problem to the exploration problem is that of
bearings-only target tracking, in which an optimal control
mechanism must be determined to determine the position of
a fixed target using a bearings-only sensor [9], [10]. These
approaches usually assume that the position of the robot can
be determined exactly.

Several authors have examined the exploration problem
using a variety of different sensing modalities [1]–[4], [11],
[12]. These all generally aim to maximize information gain
over time. In other related work, Kwok and Fox used a
reinforcement learning strategy for controlling a robot in a
way that optimized its state estimate for the purposes of
conducting a specific task, in this case, kicking a ball towards
a goal [13].

III. INFORMATION-DRIVEN EXPLORATION USING THE
EKF

The extended Kalman Filter has been widely deployed for
SLAM [14], [15], although most implementations assume a
range-and-bearings sensor. The state of the system at time
t is generally described as a vector xt = [xrt l1 . . . ln]T ,
where xrt = [x y φ] describes the pose of the robot in
a planar environment, and li describes the positions of n
landmarks in the world, all expressed in a global coordinate
frame. Because sensor observations zt and robot actions ut
are generally noisy, a probabilistic framework is applied to the
state estimation problem. In the Kalman Filter, the probability
of the state xt, conditioned on the sequence of robot actions
A = {u1, . . . ,ut} and observations Z = {z1, . . . , zt} is
approximated as a Gaussian distribution:

p(x|A,Z) ≈ k exp{(x− x̂)TP−1(x− x̂)} (1)

with the mean x̂ representing a maximum-likelihood state
estimate with covariance P, and k is a normalizing constant.

As the robot performs actions (that is, moves through the
environment), the pose distribution is propagated according
to a plant, or motion model:

x′ = f(x,u) + ν(u) (2)

which describes the noisy outcome of the robot’s actions u,
where v is normally distributed noise.

As observations are taken, the map and pose of the robot
are updated using a measurement model

z = h(x) + w(x) (3)

describing the relationship between poses and landmark ob-
servations, where w(·) is normally distributed noise. For the
EKF, f(·) and h(·) might be non-linear functions. In the
bearings-only case, h(·) describes the direction to each of
the landmarks in range of the sensor:

hl(x
r
t ) = tan−1 y − ly

x− lx
− φ (4)

where xrt = [x y φ] is the pose of the robot at time t and
l = [lx ly] is the position of a landmark.

State updates for a given observation z are determined
by defining the innovation v and computing the associated
measurement covariance S:

v = z− h(x̂) (5)
S = E

[
v(t+ 1)vT (t+ 1)

]
(6)

= ∇hP∇hT +R (7)

where R is a covariance matrix describing the sensor noise
model and E[x] indicates the expectation of the random
variable x. ∇h is the Jacobian of h(·). The innovation
describes the extent to which the current observation differs
from what the robot expects to see from its current pose.
Given the innovation v, and covariance S the state estimate
is updated by first computing the Kalman gain W :

W = P∇hTS−1 (8)

and applying W to transform the innovation into a state
displacement:

x̂ := x̂ +Wv (9)

and covariance
P := P −WSW T . (10)

Of particular interest for the exploration problem is how
to minimize the uncertainty of the landmark positions over
time. There are a variety of measures for quantifying the
map uncertainty. For this paper, we compute the sum of the
determinants of the block-2 matrices describing the individual
landmark covariances:

Err(P ) =
n∑

i=1

|Pi| (11)

where each Pi is a 2x2 sub-matrix of Pt corresponding to
landmark i. Alternative measures include computing the trace
or determinant of Pt [11].

It has been demonstrated elsewhere that, if the robot
has perfect localization, a locally optimal strategy for data
collection is to drive the robot to positions that maximize the
prediction variance |S| of the observation (Equation 7) [1],
[2].



Fig. 1. Expected information gain as a function of position, accounting
for noise injected due to robot motion. Darker poses correspond to more
informative destinations. The initial robot pose is located at the bottom center
of the image. A landmark is located at the center of the ’hole’ in the peak
(the hole being due to the minimum range of the sensor). The diagonal ridge
reflects the current heading of the robot, where motions that don’t induce a
rotation (and hence don’t inject rotation-dependent noise) are preferred.

Note that S is a function of both the state estimate x̂ and
the map covariance P . Maximizing |S| moves the robot to
locations in the world where the least information is known
about the observation. For example, in the bearings-only case,
it is advisable to move the robot to take an observation from a
direction orthogonal to the principal direction of a landmark’s
uncertainty covariance. The second point to note is that, all
other things being equal, the maximally informative pose
will be one that maximizes the determinant of the gradient
covariance ∇h∇hT (by setting P to identity and keeping
R constant). Put simply, the robot should move to locations
where the observation changes rapidly as a function of pose.
In the bearings-only case, this amounts to moving as close as
possible to the landmark.

These results are complicated by the fact that for the
SLAM problem the robot’s pose is not exactly known. |S|
can always be increased by simply increasing the uncer-
tainty of the robot’s position, which is clearly not desirable.
While computing the optimal trajectory analytically seems
difficult, if not intractable in this case, one can compute an
“information surface” numerically by simulating robot actions
and observations and examining their effects on the posterior
covariance P [11].

Formally, the informativeness of an action u is described
by:

H(u) = −(Err(P ′)− Err(P )) (12)

where P ′ is the state covariance obtained by simulating action
u and then simulating an observation and state update. The
results of one such simulation are depicted in Figure 1. In
this figure, darker poses correspond to more informative des-
tinations. These results indicate that, even in the presence of
pose uncertainty, the maximally informative actions move the
robot as close as possible to the landmark under observation.

IV. RANGE GATING

In our prior work, we demonstrated that poses correspond-
ing to maximal information gain simultaneously maximize

the condition number of the EKF state update system. Specifi-
cally, when the robot takes an observation z the state estimate
x̂ is updated by by solving the linear system

Sx̃ = v (13)

through Equations 8 and 9. Here, S is the observation
covariance, determined by Equation 7 and the solution vector
x̃ is a displacement that will be subsequently projected into
the state space through P∇hT x̃. Hence, the stability of the
EKF update is dependent on the conditioning of the linear
system defined in Equation 13. Two quantities contribute to
the stability of this system. First, the configuration of visible
landmarks plays a key role, and second, the pose of the robot
relative to this configuration is also important.

In our previous work, we computed the conditioning of
this system analytically for the two-landmark case (i.e. two
landmarks are visible) and provided numerical results for
special instances of the three- and four-landmark cases. In
each case, the condition number of Equation 13 is maximized
as the robot approaches any given landmark. It should also
be noted that these configurations also correspond to regions
where the linearization constraints introduced in the EKF
approximation are more likely to be violated.

One possible option for stabilizing the filter update is
to perform outlier gating, such as that employed in [16].
Specifically, when a landmark observation is obtained, we
compute the log likelihood of the observation based on the
current state estimate:

log p(zi|x̂) = vTi S
−1
i vi (14)

Estimates whose log-likelihood exceeds a user-defined thresh-
old of g2 can be removed:

vTi S
−1
i vi > g2 (15)

The difficulty with taking this approach is two-fold. First,
when the robot closes a large loop, it may be the case that the
observations of landmarks that come into view will deviate
significantly from the expected value. If these observations
are not incorporated into the filter update, the robot cannot
successfully close the loop. Secondly, as a robot moves close
to a landmark, the measurement covariance S will naturally
grow, so that even observations that deviate significantly from
their expected values will be more probable.

It has been observed that destabilizing observations corre-
spond to those obtained from nearby landmarks. Our approach
to outlier removal is to ignore these nearby observations.
To accomplish this we employ a virtual sensor that has a
user-defined minimum range. When observations arrive, the
virtual sensor first uses the observed landmark’s current state
estimate to determine whether that landmark might be inside
the sensor’s minimum range (Figure 2). Observations derived
from these nearby landmarks are ignored. We refer to this
method as range gating.

Our gating approach will have an impact on the robot’s map
estimates and the information gained from observing from
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Fig. 2. The virtual sensor ignores landmark observations that derive from
landmarks that are too close to the robot. Since the sensor is a bearings-only
sensor, this decision is based on the current state estimate.

new locations. Therefore, when we estimate the information
gain for any particular action, we assume that the robot is
taking observations with the virtual sensor, rather than its
real sensor. This ensures that the actual outcome of a robot’s
exploration is consistent with its predictions.

In the remaining sections, we will experimentally com-
pare the performance of our range gating method using
information-driven exploration with a variety of other ap-
proaches.

V. EXPLORATION POLICIES

Our exploration approach will operate under the following
assumptions. First, the world is populated with a set of n
landmarks, whose positions are initially unknown (but the
value of n is assumed to be known). The environment is free
of obstacles. The EKF will maintain the pose [x y φ] of the
robot, and the landmark positions [x1 y1 . . . xn yn].

At each time step, the robot executes an action u, fol-
lowed by an observation z. The observation z returns (noisy)
bearing measurements to those landmarks in the environ-
ment that are within the range of the robot’s (real) sensor
[min range, max range]. Data association is assumed to be
perfect, and the sensor is assumed to have a full 360 degree
field of view. When a landmark is observed for the first time,
its position is initialized in the filter to be located at the mean
of the sensor range, and its covariance initialized to have a
standard deviation of half the sensor range:

σr =
max range− min range

2
(16)

In real-world applications with obstacles, these sensor
ranges may not be so easily estimated, and other initialization
schemes may be required. For the experiments presented here,
one might consider initializing the landmark position at the
maximum sensor range, since the robot will typically see
landmarks for the first time when the robot moves within
range of them. However, our experiments suggest that the
current initialization scheme is reasonable.

We will compare the performance of five exploration
policies, as described below:

• Random: The robot drives to successive random poses
in the environment.

• InformationGain: The robot drives directly to the glob-
ally optimal position for maximizing information gain.
The global maximum is found by hill-climbing from
each landmark estimate, as well as from the robot’s
current pose. Observations are not filtered.

• OutlierGated: Like InformationGain above, the robot
maximizes information gain but filters outlier observa-
tions according to Equation 15, where g = 1.5.

• RangeGated: Like InformationGain above, the robot
maximizes information gain but filters observations using
a virtual sensor with a user defined minimum range
(defined below).

• Voronoi: The robot traces out the Voronoi graph (VG)
defined by the landmarks. Specifically, the robot attempts
to visit each junction of the VG at least once by
following routes that pass between nearby landmarks.

In our previous work, the Voronoi approach out-performed
InformationGain and Random by a significant margin.

A. Coverage
Our exploration policies (with the exception of Random)

assume that the robot has a list of landmarks to consider,
either for computing the VG or for locally optimizing in-
formation gain. However, some landmarks may not yet be
discovered. In order to ensure coverage of the environment
so that each landmark is discovered, the world is initially
populated with a set of dummy landmarks, as described in [5].
As each landmark is observed for the first time, a dummy
landmark is removed. Planning uses the set of known and
dummy landmarks. When the robot moves to a pose where it
expects to observe a dummy, and fails to do so, the dummy
is relocated to an unexplored region of space. While this
approach can have drawbacks, it drives exploration and in
the limit will guarantee that all landmarks are observed.

It should be noted that none of the exploration strategies
considered here employ any special mechanisms for success-
ful loop closing. In our view, successful loop closing should
be an emergent property of the exploration policy and should
not require handling as a special case. It is also worth noting
that the policies considered make strictly local decisions in
time– no attempt is made to consider plans that optimize over
the long term. This latter problem remains a rich area of study
(see, for example [11], [12]).

VI. EXPERIMENTAL RESULTS

We have run our exploration policies in a simulated envi-
ronment with a variety of settings. For all experiments, the
map region was confined to a 200m by 200m plane. For
each trial, a map containing 20 landmarks was generated
by randomly sampling uniformly from the map region. To
ensure coverage, we initially employed the dummy landmark
mechanism described above.

For individual trials, each run consisted of 2000 time steps
in which an action consisted of a rotation to a desired heading
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Fig. 3. Selected Exploration Policies: a) RandomPose, b) InformationGain, c) Voronoi. Refer to the text for details.

followed by a translation of at most 1m. Note that this motion
model is non-linear. The robot’s maximum sensor range was
40m and the minimum sensor range was 2m. The minimum
range of the virtual sensor employed for range gating was
10m. Finally, three observation noise models were employed.
All three models assumed that bearing observations were
zero-mean normally distributed with a variance that is con-
stant with respect to landmark distance. The standard devi-
ations of the noise were set to 1 degree, 5 degrees and 10
degrees respectively.

For each exploration policy, and for each observation noise
model, a total of 100 trials was conducted. Figure 3 illustrates
a typical map constructed by the main types of exploration
strategy. The estimated trajectory of the robot is marked and
the landmark estimates are plotted, along with (sometimes
elongated) ellipses indicating the landmark covariances.

Figure 4 depicts the results from our experiments. The
first plot indicates the mean total error in the map (ground
truth landmarks versus landmark estimates). Since the map is
invariant to rigid transformations, the estimated map is first
corrected by a global rotation about the robot’s starting pose
to bring it to closest correspondence to the actual map. The
second graph plots the mean number of landmarks discovered
by each exploration policy over the 100 trials. There are
two reasons why all 20 landmarks might not be discovered
in any particular trial: the policy might spend too much
time in explored regions to cover all the unexplored space
within 2000 time steps, or, the policy might be susceptible
to divergence, so that the robot is incapable of successfully
navigating to unexplored regions of space.

It is interesting to note that in most cases the accuracy of
the map improves as sensor noise increases. This is due to the
fact that the filter is more brittle when the sensor noise is low–
behaviors that violate the underlying Gaussian and linearity
assumptions become more problematic for the filter. In our
experimentation, we assumed that the sensor noise model is

known, but even in such situations our results demonstrate
that there is an argument to be made for over-estimating the
sensor noise.

These experimental results clearly indicate the success
of our range gating method over both the Voronoi-based
approach and traditional outlier gating. It should be noted,
however, that the Voronoi-based approach results in improved
coverage of the pose space, due to its systematic traversal of
the map (the information-driven approaches will spend more
time in regions where the map is uncertain).

VII. CONCLUSION

We have presented an approach to information-driven ex-
ploration for bearings-only SLAM that successfully over-
comes stability issues that are inherent to the EKF update.
Specifically, we employ a virtual sensor that performs range
gating, removing observations that are expected to pose
problems for the filter update. In experimental results simu-
lating an exploring robot, we demonstrated that this approach
produces maps that are significantly more accurate than maps
produced using simple outlier gating or a heuristic exploration
approach based on tracing the Voronoi graph of the observed
landmarks.

Despite these successes, there are several directions for
future work. First, while our simulated results illustrate the
numerical properties of our exploration approach, it remains
to be tested on a real robot. In addressing a real-world sce-
nario, we will also need to consider issues in data association,
and unknown noise models in the sensor and robot’s actuators.
Second, our approach employs a user-defined threshold for
gating observations. This threshold was set according to the
user’s intuitive sense of what observations should be excluded,
and depends on both the sensor’s characteristics and the
robot’s odometric noise model.

An alternative approach to gating is to employ an outlier
detector where the threshold is based on raw deviation in the
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Fig. 4. Mean mapping error, and map coverage, for 100 trials. Bars
are reported by observation noise models of 1, 5 and 10 degree standard
deviation. The horizontal axis is sorted by method: Rnd: Random, IG:
InformationGain, VOR: Voronoi, RG: RangeGated, and OG: OutlierGated

bearings observation (that is, a threshold set at k degrees,
rather than k standard deviations from the mean). It may be
possible to analytically derive an optimal threshold setting
based on the deviation of the linearized sensor model from
the underlying non-linear process. Future work will continue
to address these questions.
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