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Abstract

We consider the choice of which particular attention operator to use for visual
recogniton and pose estimation applications. Visual attention plays an important role
in reducing the amount of computation (biological or artificial) that is required for a
particular task. However, it is not always clear which attention operator is best suited
to any given task. This paper presents the results of an empirical study comparing
the performance of a set of visual attention operators on the task of learning a set
of landmarks for pose estimation. These landmarks are defined visually in the local
environment of a moving robot. The performance of the operators is quantitatively
evaluated based on the utility of the learned landmarks for the task of robot pose
estimation.
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Comparing Attention Operators for Learning Landmarks

1. Introduction

This paper evaluates several alternative attention operators in the context of
mobile robot localization (i.e. pose estimation). Attention operators (also known
as interest operators) have become increasing important in computational models of
both biological vision. Attention also seem to be of growing importance for an growing
range of purely computational tasks. In particular, the successful application of
attention can significantly reduce the computational cost of performing generic visual
tasks [3]; in fact it may be a necessity in many contexts. In view of this principle,
it is not surprising that there is a large body of prior work on visual attention and
computational methods for computing points of fixation. It is sometimes the case
that these attention operators are based on biologically motivated criteria, but some
are based also on analytic or even ad hoc criteria. Given the range of possible
attention operators and their differing computational characteristics, it is important
to ask how the choice of operator relates to performance.

In this paper, we consider visual attention as it is applied to the task of robot
localization. We build on prior work that addresses the localization problem in the
context of learning a set of visual landmarks in the environment [4]. Our approach
depends on the reliable output of an attention operator in order to identify initial
candidates for landmarks. The open question remains as to which attentional crite-
ria is best suited to landmark learning and is likely to provide the best locatization
system. To this end, we compare the empirical results of employing four different
attention operators to learning landmarks in a variety of environments. We present
quantitative results to support the assertion that stability is the dominant require-
ment for the extraction of useful landmarks. As a byproduct, we provide results that
allow us to claim improved pose estimation performance from visual cues.

While our experimental data is collected and quantified using one particular local-
ization framework as a testbed, there are several related schemes for both robot posi-
tioning and object recognition that employ (or could employ) an attention-like process
in a manner consistent with the experiments described here. As such, we believe these
results are directly applicable to these other methodologies as well [5, 6, 7, 8, 9].

The remainder of this paper is divided as follows. We review the field of visual
attention in Section 2, and discuss the specific operators used in our experiments in
Section 3. We then briefly describe our landmark learning mechanism in Section 4.
Our experimental approach and results are presented in Section 5, and finally we
discuss the results and our conclusions in Section 6.

2. Visual Attention

Visual attention has been demonstrated to be crucial to human vision and is
becoming a critical approach for machine vision. Several models of how to allocate
attention have been proposed in the computational and biological literature. The
majority of these models use low-level image features to select locations of interest
in an image. These operators are often based on features such as edge density, edge
orientation and contour closure (Figure 1) and there is evidence that strongly suggests
the such features are exploited by the primate visual system at a level prior to object
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Figure 1. Edge density (1(a)), contour closure (1(b)) and edge orien-
tation (1(c)) are presumed to be selected by human visual system at a
level prior to image understanding.

recognition and image understanding. These features act as cues to the visual system
to attend locations for further analysis [10, 11, 12], reducing the amount of the image
to be analysed [3].

It has been observed that less effort and time are needed to identify changes if
they occur in regions which would be used to describe an image (regions of central
interest) [13]. It has also been demonstrated that attention plays an important role in
recognizing previously observed scenes [14]. Our prior work indicates that attention
is also useful in the task of estimating position, where changes in a region of interest
can be mapped to a corresponding change in pose [4].

Computational attention operators can use different models to select locations
of interest in an image. These models can be based on psychophysical studies, on
neurological frameworks of human vision or on the physics of image formation. Psy-
chophysically motivated models generally rely on one feature which has been shown
to be preattentively selected by the human visual system and act as spatial filters
for these features. Locations in the image are assigned interest values based on
the degree to which they exhibit the feature used for selection (for example, degree
of convexity [15], degree of symmetry [16, 17, 18, 19]) or are based on the local
variations in image statistics (differences in edge orientation [1], differences in edge
density [1], curvature variation [20]). Methods relying on image structures exam-
ine the features present in the image and assign values of interest based on certain
properties of these features. These methods can be based on signal processing [21]
and scale-space models [22, 23], among others. Finally, neurophysiologically-based
methods [24, 2, 25, 26] attempt to model the the neural mechanisms controlling
human visual attention.

We are interested in determining which attentional operators are best suited to
robot position estimation. In the following section, we describe the set of operators
that were employed in our experiments.

Proof version: June 21, 2003 4
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Figure 2. Landmarks selected by the edge density operator.

3. The Operators

Several interest operators exist which attempt to model aspects of human preat-
tentive vision. Preattentive vision is the ensemble of parallel processesing stages that
precede cognitive processing and determine what immediately attracts our attention.
Most of these operators concentrate on analysing one or two features which have been
shown in the psychophysical literature to be preattentively selected by the human
visual system. In this section, the operators used for this research will be described.
The operators are an edge density operator [1, 4], a radial symmetry operator [16],
a corner detector [27, 28], and a combination luminance/edge orientation/colour op-
erator [2] (for the sake of brevity, this last operator will be refered to as the Caltech
operator). For the purposes of comparison, we will also employ a “Random” operator
which simply selects image points at random.

3.1. Edge Density Operator [1]. The edge density operator was developed for
a robotic mapping task involving the assembly of images from an environment to
be used in a virtual tour. It is also the default operator used in our prior work on
the localization problem [4, 29]. This operator is motivated by work by Treisman
which showed that edge density is one of the feature primitives preattentively selected
by human vision [12]. The operator works by selecting regions in the image which
deviate the most from the mean density of the whole image. An edge map is created
where each element is assigned an intensity corresponding to the strength of its
associated edge. This edge map is convolved with a Gaussian windowing operator
to give an edge density map. Interest is then defined as the location where the local
density varies maximally from the mean density over the whole image (see Figure 2).

3.2. Radial Symmetry Operator. This operator was developed as a low-level
mechanism for guiding gaze control in an active vision system [16]. Whereas the
density operator is based on edges, the radial symmetry operator is based on differ-
ential properties of image intensity function. The radial symmetry operator does not
attempt to select regions which are perfectly symmetric, but attempts to quantify
the extent to which any pixel exhibits local symmetries.

Proof version: June 21, 2003 5
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Figure 3. Landmarks selected by the radial symmetry operator.

For a point p in the image, the gradient of the intensity at that point is denoted
by

(1) ∇p = (
∂p

∂x
,
∂p

∂y
).

The magnitude, r, and phase, θ, at point p are given by

(2) r = log(1 + ‖∇p‖)

(3) θ = arctan(
∂p

∂y
/
∂p

∂x
).

The angle αij denotes the angle that the line through points pi and pj makes with the
horizontal. For any point p in the image, radial symmetry contributions come from
pairs of points which have p as a midpoint. The symmetry contribution made by
each pair is the product of the magnitudes of the intensities at each point weighted
by a distance term, Dσ, and a phase term, P :

(4) Dσ(i, j) =
1√
2πσ

e−
‖pi−pj‖

2σ

(5) P (i, j) = [1− cos(θi + θj − 2αij)][1− cos(θi − θj)].

The direction of the radial symmetry contribution is defined as the average of the
phases of the two contributing points. The radial symmetry for any point is the sum
of all contributions weighted by the difference between the phase of the point and
the phase where contribution is the greatest. Interest is defined as points with the
greatest radial symmetry (see Figure 3).

3.3. The Smallest Eigenvalue Criterion. The “smallest eigenvalue” operator
was developed for detecting and tracking points of interest in an image [28, 27]. This
operator can be classified as a generic corner detector (Figure 4). The operator defines
interest in terms of the local variation of the intensity function, in particular, the
condition number of the covariance matrix of image intensity in a local neighborhood.
The criterion for an interest point requires that the smallest eigenvalue of the 2× 2

Proof version: June 21, 2003 6
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Figure 4. Landmarks selected by the smallest eigenvalue operator.

Figure 5. Landmarks selected by the Caltech operator.

intensity gradient covariance matrix Z at any particular point exceed a threshold.
That is, for any point pi in the image, we compute the covariance matrix

Zi =

[
g2

x gxgy

gxgy g2
y

]
(6)

where gx and gy are the directional derivatives of the intensity image at the point
pi. pi is a point of interest if λi

min, the smallest eigenvalue of Zi, exceeds a particular
threshold and is maximal over all λj

min in the neighbourhood of pi.
This requirement is equivalent to requiring that the image gradient is strong in

two orthogonal directions (for example, corners or checkerboard textures). In this
sense, it is related to the edge density operator; however it avoids the need for an
explicit edge computation and requires variation in two orthogonal directions. For
example, whereas the edge density operator is equally likely to select a point anywhere
along the edge of a doorframe, the Kanade, Lucas and Tomasi operator will prefer the
corners of the doorframe. On the other hand, by avoiding the explicit edge detection
stage it is sensitive to local variations in illumination and shading.

3.4. Caltech Operator[2]. This operator is by far the most complex we em-
ployed and can only be described here in summary form. This operator is based on
the winner-take-all model of attention by Koch and Ullman[24]. This operator uses
multi-scale saliency maps and three interest features: colour, luminance contrast and
orientation. Features are extracted using a center-surround method implemented as
the difference between fine and coarse scale responses. The feature maps created

Proof version: June 21, 2003 7
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Candidate
Landmarks

Tracked Landmarks. . .

Attributes

Images sampling pose space

Figure 6. The offline training method.

using the center-surround method are fed into conspicuity maps. The colour fea-
tures are extracted using red-green and blue-yellow center surrounds based on colour
pop-out. Four Gaussian pyramids are created: one each for red surround and green
center, green surround and red center, blue surround and yellow center and yellow
surround and blue center. The luminance contrast map is made using dark center
and light surround as well as light center and dark surround. Gabor pyramids1 are
used to find locations of orientation contrast between the center and the surround.

The three conspicuity maps are then normalized and summed to give the saliency
map, which is then fed through a winner-take-all network of inhibition and return so
that the global salient points can be located without selecting the same points twice
(see Figure 5).

4. Landmark Learning

In this section, we briefly describe the landmark learning framework that we
employ for our experiments. These descriptions are necessarily terse and further
details have appeared elsewhere [30, 4].

Our localization framework consists of two distinct phases; an initial, off-line
learning or exploration phase, and an on-line pose estimation phase. In the initial
off-line phase a set of landmarks is extracted from image data and grouped for future
recognition. A set of attributes of the learned groups, otherwise known as tracked
landmarks, are encoded using a generic parameterization method, which is later ex-
ploited for characterizing the landmark as a function of camera position. The on-line
phase, which is employed whenever the pose of the camera is required, consists of
detecting and classifying landmarks from the current view, and thereby computing
a pose estimate from the attributes of the observed landmarks. The framework is
depicted in Figures 6 and 7 and described below.

• Off-line learning phase. (Figure 6):

1A Gabor filter consists of a sinusoidal grating with a Gaussian envelope.

Proof version: June 21, 2003 8



Comparing Attention Operators for Learning Landmarks

Candidate
Landmarks

Independent Pose
Estimates

Final Pose Estimate

Input image

Match

. . . Tracked Landmarks

. . . Filter & Merge

Figure 7. The online pose estimation phase.

(1) Exploration: Images are collected sampling a range of poses in the
environment.

(2) Detection: Landmark candidates are extracted from each image using
a model of visual attention.

(3) Matching: Tracked landmarks are extracted by tracking visually sim-
ilar candidate landmarks over the configuration space.

(4) Parameterization: The tracked landmarks are parameterized on the
basis of a set of computed landmark attributes (for example, position
in the image, intensity distribution, edge distribution, etc), and then
measured in terms of their a priori utility for pose estimation.

(5) The set of sufficiently useful tracked landmarks is stored for future re-
trieval.

• On-line pose estimation (Figure 7):
(1) When a position estimate is required, a single image is acquired from

the camera.
(2) Candidate landmarks are extracted from the input image using the same

model of visual attention used in the off-line phase.
(3) The candidate landmarks are matched to the tracked landmarks learned

in the off-line phase.
(4) A position estimate and associated uncertainty is obtained using each

computed attribute for each matched candidate landmark.
(5) A final position estimate and uncertainty is computed by merging the

individual estimates of the observed candidates.

5. Experimental Results

Our experimental methodology is as follows. We ran experiments for each atten-
tion operator in the domains depicted in Figure 8. The first domain consisted of a
gantry-mounted robot arm with a camera affixed to the end effector. The camera was
directed towards a simple scene constructed from a variety of objects. This domain
was selected for the ease of measuring ground truth (to less than a hundredth of a
millimetre). The pose space was restricted to a ten centimetre square.

Proof version: June 21, 2003 9



Comparing Attention Operators for Learning Landmarks

Operator Mean Error (cm) Std. Deviation (cm) Percent Error
Edge Density 0.088 0.00643 8.8%

Radial Symmetry 0.13 0.01 13%
Smallest Eigenvalue 0.092 0.005 9.2%

Caltech 0.13 0.018 13%
Random 2.9 5.6 290%

Table 1. Experimental Results for Simple Scene

Operator Mean Error (cm) Std. Deviation (cm) Percent Error
Edge Density 12.5 19.6 62%

Radial Symmetry 22.7 45.4 113%
Smallest Eigenvalue 12.2 19.0 61%

Caltech 11.4 14.5 57%
Random 63.1 3265 315%

Table 2. Experimental Results for Laboratory Scene

The second domain consisted of a Nomad 200 mobile robot operating in a two
metre by two metre pose space in our laboratory. This domain was selected for its
generic nature. As such, ground truth could be estimated only to within 0.3cm.

Figure 8. Simple Scene and Laboratory Scene.

For each domain under consideration, a set of training images was collected over
a uniform sampling of the pose space; at one centimetre intervals for the simple scene
and twenty centimetre intervals for the lab scene. For each attention operator a set of
landmarks was learned from the training images. Finally, a second set of test images
(twenty for the simple scene, thirty for the lab scene) were taken from random points
in the pose space and applied to the online phase of each trained set of landmarks.

The mean pose estimate error and mean uncertainty was computed for each atten-
tion operator and are reported for the Simple Scene in Table 1 and for the Laboratory
Scene in Table 2. In addition, we define the percent error as the mean error divided
by the sample interval for the particular scene. Note that a localization scheme that
simply chooses the “nearest” image would have an expected percent error of 50%.

Figures 9 and 10 depict the set of pose estimates for each attention operator in
each domain, as plotted against their ground truth.

Proof version: June 21, 2003 10
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Figure 9. Simple Scene Results: a) Caltech, b) Smallest Eigenvalue,
c) Symmetry, d) Edge Density, e) Random
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(e)

Figure 10. Laboratory Results: a) Caltech, b) Smallest Eigenvalue,
c) Symmetry, d) Edge Density, e) Random

The results for these experiments indicate that the pose estimation procedure
was consistently more effective in the simple scene that in the much more challenging
laboratoty scene across all attention oerators, as we would expect. In every case,
the errors in the laboratory scene most of the errors was due to a small number of
outlier measurements which could have been removed by subsequent post-processing
(as discussed in our prior work on pose estimation). In the current experiments, we
have left these outliers in place as their presence is part of what is being evaluated.

In all experiments, the radial symmetry operator produced worse performance
than the other operators except the random operator. While the Caltech operator
produced results commensurate with the edge and eigenvalue operators, the com-
plexity of the operator and the substantial computing time involved suggest that it
would not a a preferred candidate in practice (for example, it is the only operator
that explicitly computes a multi-scale result).

6. Conclusions

In this paper we have evaluated the use of alternative attention operators for the
task of robot pose estimation. This task also includes an implicit image recognition
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subtask and hence these results appear to be relevant for that related problem as
well. Our pose estimation scheme is based on the selection of subwindows from an
image under the assumption that they are locally stable in the face of (small) changes
in illumination, translation, scaling, rotation and other factors.

Unlike a related operator evaluation by Schmid[31] the present study includes
several complex ”high-level” operators and considers them in the context of a pose
estimation task.

Our results indicate that, in general, all four operators perform very well for
the task of pose estimation, particularly in comparison with the performance of the
random operator. The observant reader will note that the slightly poorer results of
the Symmetry Operator in the Laboratory Scene are due to a small number of outlier
estimates. Overall, we can conclude that stability is the dominant factor that leads
to the good results demonstrated here. That is to say that each operator selects
different kinds of points, but each does so with substantial stability. That stability
is an essential property of a good attention operator is evidenced by the abysmal
performance of the random operator.

Open questions include how to combined the results of more than one operator
in the context of pose estimation and related tasks. The manner in which multi-
scale data from various operators can be combined or exploited also remains to be
considered more fully.
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