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Abstract— Tremendous progress has been made recently in
simultaneous localization and mapping of unknown environ-
ments. Using sensor and odometry data from an exploring mobile
robot, it has become much easier to build high-quality globally
consistent maps of many large, real-world environments. To date,
however, relatively little attention has been paid to the controllers
used to build these maps. Existing exploration strategies usually
attempt to cover the largest amount of unknown space as quickly
as possible. Few strategies exist for building the most reliable map
possible, but the particular control strategy can have a substantial
impact on the quality of the resulting map.

In this paper, we devise a control algorithm for exploring
unknown space that explicitly tries to build as large a map as
possible while maintaining as accurate a map as possible. We
make use of a parameterized class of spiral trajectory policies,
choosing a new parameter setting at every time step to maximize
the expected reward of the policy. We do this in the context of
building a visual map of an unknown environment, and show
that our strategy leads to a higher accuracy map faster than
other candidate controllers, including any single choice in our
policy class.

I. INTRODUCTION

Simultaneous mapping and localisation (SLAM) is one of
the core problems of mobile robotics. A navigating robot
requires an accurate and globally consistent model of the
world in order to make decisions about how to get from
point to point within the environment. As a result, substantial
effort has been spent in having robots learn environment
models, or maps, automatically. It is now possible to build
high-quality maps of a wide variety of environments with a
number of different sensors. Typically, the mapping process
involves manually (or heuristically) controlling a robot around
the environment while it acquires sensor data throughout the
space. The recorded sensor data is assembled into the map
either during the exploration process, or more commonly, after
the fact.

Recording the sensor data for a good map, however, is not
necessarily a straight-forward process. The control strategy
used to acquire the data can have a substantial impact on
the quality of the resulting map; different kinds of motions
can lead to greater or smaller errors in the mapping process.
Ideally, we would like to automate the exploration process in
a manner that will lead to high accuracy maps.

In this paper, we focus on the problem of finding such a
motion controller, one that can explore quickly while gathering

data in a manner that will lead to the most accurate map.
This is a different problem to standard motion planning, in
that we do not have an a priori model of the environment
that we can use to find an optimal trajectory. The entire
point of the trajectory is to build such a model, but without
the model we cannot precompute a plan that will build the
most accurate map. We will instead find an approximate
solution, using a greedy strategy for generating plans that
will give a reliable map in expectation over short sections
of trajectories. While this algorithm allows us to estimate the
optimal trajectory for maximum-coverage SLAM, the result is
more important for the new paradigm it exemplifies. We show
how to parametrically optimise SLAM to produce a general
purpose solution with an efficiency that could not readily be
achieved manually.

We will focus our attention on a parameterised policy
class, building on our recent work in which a set of hand-
crafted exploratory policies were examined for their accuracy,
coverage and efficiency [1]. This policy class allows us to
vary the strategy from very explorative to very conservative
(e.g., returning to known space regularly to re-localise). (The
primary results from the previous work indicated that the
parameter setting of the most accurate exploratory policy was
also the most inefficient.)

We will use a vision-based representation of the environ-
ment for navigation [2]. A visual map is constructed by
tracking salient image features over a set of training images
and then computing generative models of the features as
functions of the robot’s pose. Even when the map is to be
produced as a side-effect of accomplishing some other task, it
may be possible to alter the trajectory to improve the quality
of the resulting map.

II. SLAM AND VISUAL NAVIGATION

Our map representation employs the visual landmark learn-
ing framework developed. We review it here in brief and refer
the reader to this work [2] for further details. The object
of visual mapping is to learn a generative model of the
image-domain features of an environment. We can use this
model to predict the maximum-likelihood observations from
arbitrary camera poses, and then use an Extended Kalman
Filter (EKF) [3], [4] to track the position of the robot during



Fig. 1. A set of observations of an extracted scene feature. The grid represents
an overhead view of the pose space of the camera, and feature observations
are placed at the ground-truth pose.

navigation. This is a standard practice in state estimation, and
the reader is referred to [3], [4] for the details.

The framework operates as follows: the robot collects a
set of observations or images of a scene. A corner detector
is applied to the set of images to select a set of candidate
features [5]. This feature selection process corresponds to a
model of visual saliency. The features are also cross-validated
across the complete data set in order to retain only those
features that demonstrate temporal stability. It should also be
noted that we use a gating procedure to detect outliers and
remove outliers in the matching process. More details can be
found in [2].

These candidate features are tracked across the images by
maximising the correlation of the local intensity image of
the feature. The visual map is constructed by recording the
tracked features, and we localise the robot during subsequent
navigation using a Kalman filter. Figure 1 depicts the result
of tracking one feature across an image set, where the local
feature intensity image is depicted at the ground-truth pose.

Although we record each feature at specific poses in the
environment, we can generate (or predict) new “observations”
of the feature from arbitrary poses by interpolating between
the recorded observations. The observation of a feature is
represented as the position of the feature in the image, z =
[x y]T , and an interpolator is constructed using simple bilinear
interpolation between neighbouring observations. In practice,
an arbitrary interpolation scheme can be employed.

The EKF for simultaneous localisation and mapping
(SLAM) typically assumes the robot pose features and im-
age features lie in the same domain. In contrast, the visual
map representation uses feature observations in the image
domain. We will therefore use the EKF only to estimate the
robot pose for each image. and use a maximum-likelihood
approach for estimating the image poses. The advantage to
this representation is that the only parameters maintained in
our implementation are those of the robot pose, leading to

computational efficiency. The disadvantage is that we can
no longer use the observations of each feature to model the
features probabilistically. We compensate for this by using
cross-validation to estimate feature covariances.

The Kalman Filter and Visual Navigation

The standard Kalman filter provides a probabilistic state
estimate as a Gaussian distribution, consisting of a mean state
estimate x̂ and an error estimate, or covariance C. The EKF
operates in two stages: a prediction step, based on the forward
motion of the robot, and a measurement step, based on the
observation or image. The robot’s current state estimate is
given by x(k − 1). At time step k, the robot executes an
action u(k) and takes a subsequent observation z. The filter is
updated from u(k) according to the standard EKF prediction
model:

x	(k) = f(x(k − 1),u(k)) (1)
C	(k) = AC(k − 1)AT + Q, (2)

where x	(k) is the prediction state estimate and C	(k) is the
prediction covariance or error. f(·, ·, ·) describes how the the
state changes as a function of the previous state and control. A
and Q are the Jacobian with respect to motion and the noise
term.

An image is acquired and those features zi in the image
that match features in the model are extracted. At the current
pose estimate, a predicted observation ẑi for is generated each
feature. The state and error estimates are updated as

x(k) = x	(k) + Ki(k)vi(k) (3)
C(k) = (I−Ki(k)∇hi(k))C	(k). (4)

where vi(k) is the innovation, the extent to which the actual
image features differ from the expected image features, and
Ki(k) is the Kalman gain.

The innovation vi(k) is computed as

vi(k) = zi(k)− ẑi(k). (5)

The innovation covariance requires estimation of the Jacobian
of the predicted observation given the map and the prediction
estimate. We approximate this Jacobian as the local gradient
of the model interpolation function and define it as ∇hi. The
Kalman gain then follows the standard observation model,
computed from the measurement covariance Si(k):

Si(k) = ∇hiC
	(k)∇hTi + Ri(k) (6)

Ki(k) = C	(k)∇hTi S−1
i (k) (7)

where R is the cross-validation covariance associated with the
learned feature model. It is important to note that R serves
several purposes—it is simultaneously an overall indicator of
the quality of the interpolation model, as well as the reliability
of the matching phase that led to the observations that define
the model; finally it also accommodates the stochastic nature
of the sensor.



Fig. 2. Landmark learning framework: Salient features are detected in the
input images and tracked across the ensemble. The resulting feature sets are
subsequently parameterized as functions Fi(·) of the robot pose.

Building a Visual Map

The previous section described how to use a visual map
and a Kalman filter to localize a robot. In order to actually
build the visual map, we cannot assume that the images are
labelled with perfect odometry, so we use the Kalman filter
to estimate the pose of each new observation based upon
the previous observations. At each time step, given the new
observations, the Kalman filter is updated according to the
above formulation. Combined with the prediction model, a
pose estimate and associated covariance are obtained. Once an
updated pose estimate is available, the successfully matched
features are inserted into the visual map, using the estimated
pose as their observation pose. We use this arguably naı̈ve
map-building algorithm to demonstrate that good exploration
algorithms can be used to generate accurate maps even using
extremely simple map-building technology.

Figure 2 depicts the mapping algorithm: a set of images is
collected at poses q1 . . . q5, and features f1 and f2 are tracked
in each image. The EKF gives an estimate qi for each image.
We then use interpolation to find a generative model q = Fi(f)
that allows us to compute the pose q for an observation of
feature fi.

III. OPTIMAL CONTROL FOR SLAM

For many environments, the Extended Kalman filter ap-
proach has been shown to work well at building globally
consistent maps that allow robots to track their position re-
liably. However, there is one issue with the algorithm that can
cause difficulties in building large maps. As the robot senses
new parts of the environment, it integrates the new visual
features into the visual map. At some point, the exploration
trajectory brings the robot back into previously explored space,
or “closes the loop”. If the robot has been able to maintain
its pose estimate with high certainty, then robot should, on re-
entry, be able to track its pose in the already explored space
relatively easily. If, however, the robot’s uncertainty has grown
too large, or the robot has re-entered the map at a perceptually
ambiguous location, then the robot may either make errors in
maintaining its pose estimate or fail to detect that it has re-
entered the map.

Figure 3 illustrates the two possible scenarios. In figure 3(a),
we see a robot trajectory (the white line) and the partial
visual map it has constructed. In figure 3(b), we see the
robot has covered a small portion of the unexplored space and
then re-entered the map. Because the robot has only travelled
a short distance through the unmodelled area, its positional
uncertainty has only grown a small amount. In comparison,
we see in figure 3(c) that the robot has travelled through most
of the unexplored area. Lacking a map of this area, the robot’s
uncertainty has grown substantially. When the robot re-enters
the map, its uncertainty is sufficiently large to make accurate
position estimation, even in the mapped regions, difficult.
The robot may not be able to find correct correspondences
between the sensed visual features and the features in the
model. Even worse, the robot may not be able to find enough
correspondences, which would cause it to re-map this area,
likely leading to a globally inconsistent map. If we choose
trajectories that can explore the space rapidly but allow us
to return to the mapped regions sufficiently often to avoid
tracking errors or mapping errors, then we can avoid such
problems.

The approach we take is to use an online optimization
of one-step lookahead, choosing trajectories that maximize
the space explored while minimizing the likelihood we will
become lost on re-entering the map. In this case, our single
step is over a path from the existing map through unexplored
space to the first measurement inside the map. At every
time step, we will choose a trajectory that will minimize
our uncertainty as we re-enter the map, at the same time
maximizing the coverage of the unexplored area. We use
a parameterized class of paths, or policies, and repeatedly
choose a parameter that maximizes our objective function.

Policy Class

We will use a parametric curve [6] that gives the the distance
r of the robot from the origin as a function of time as it moves
in a spiral:

r(t, n) =
kt

2 + sinnt
, (8)

where k is a dilating constant that is fixed for our experiments
at k = .2 and n parameterizes the curve to control the
frequency with which the robot moves toward the origin. We
can re-write this in terms of the position x(t), y(t) of the robot
as [

x(n, t)
y(n, t)

]
=

[ kt
2+sinnt cos

(
π

180 t
)

kt
2+sinntsin

(
π

180 t
)
]
. (9)

In the extreme cases, the curve never moves toward the origin
(n = 0), or does so with very high frequency (n→∞) (e.g.,
figure 4(b)). Also of interest are integral values of n, where the
curve never self-intersects, and has n distinct lobes. Finally, the
rate of new space covered as a function of θ decreases roughly
monotonically as n increases, since for larger n the robot
spends an increasing amount of time in previously explored
territory.

For a particular trajectory r(·, n), we define an objective
function q(n) for computing the optimal trajectory. We define



(a) Before Exploration (b) Lower Uncertainty (c) High Uncertainty

Fig. 3. Robot trajectory (spiral) and uncertainty ellipse (gray ellipse). Figure (a) illustrates a robot exploring within known territory. Figure (b) depicts a small
excursion into unknown territory such that it retains a small uncertainty ellipse. Figure (c) shows a larger excursion that results in a much larger uncertainty
ellipse. For such larger excursions, the uncertainty may become unrecoverably large and result in an inconsistent map.

q from t0 to tf as the amount of unexplored space covered
from t0 to tf , reduced by the uncertainty of state estimate
at time tf . Let us use U(r(ti, n)) as an indicator function,
whether or not the pose of the robot at time ti is in explored
space:

U(r(ti, n)) =

{
0 r(ti, n) is in explored space
d(r(ti)) r(ti, n) is not in explored space

(10)
where d(r(ti)) is the Euclidean distance from the robot pose
given by r(ti) to the nearest explored pose. The robot is
considered to be in explored space when d(r(ti)) < k, the
scaling constant in Equation 8.

There are many choices for quantifying the uncertainty of
the EKF filter at time tf : we will use one of the most common
functions, the determinant of the covariance matrix, |Cov(tf )|.
These two functions give us our objective function

q(n; t0) =

tf∑

ti=t0

U(r(n, ti))
2 − λ|Cov(tf )|. (11)

This function contains the one free parameter λ that allows us
to calibrate how aggressive the exploration of unknown space
should be compared with building a high-accuracy map.

The Online Controller

Given the policy class pn(t) and objective function r(pn(t))
described above, we want to find n to maximize r(pn(·)).
Given a particular state of the EKF at time t0, we cannot
compute the covariance at time tf in closed form. Instead, we
use numerical simulation, projecting the Kalman filter forward
until the trajectory enters unexplored space and then returns
into the map. We discretize n and evaluate q(ni) for each
choice of n. The complete control algorithm is summarized in
table I.

IV. EXPERIMENTAL RESULTS

We ran our experiments in a simulated office-like environ-
ment in order to obtain accurate ground truth. The environment
was composed of a single 12m× 6m rectangular room, with
images from a real laboratory environment texture-mapped

• At each time step t0,
• For value of ni ∈ [0, nmax]:

1) Simulate forward r(ti, ni) from ti = t0 until U(r(ti, ni)) > k
or ti = tmax

2) Simulate forward r(tj , ni) from tj = ti until U(r(ti, ni)) < k
or tj = tmax

3) Set tf = tj

4) Set q(ni) =
Ptf
ti=t0

U(r(n, ti))− λ det(Cov(tf ))

• Set n = argmaxni q(ni)

TABLE I
THE SLAM CONTROLLER

on to the walls. Visually, the environment was somewhat
simplified compared to what the robot might encounter in a
real-world setting. However, our experience indicates that the
visual mapping framework is particularly prone to selecting
environmental features that correspond to planar patches. In
this sense, the simulated environment presented the visual
mapping framework with the best possible scenario and we
could concentrate on the behaviour of the framework due to
odometric and modelling error.

The simulated robot had a ring of sixteen evenly spaced
sonar sensors which are employed solely for detecting colli-
sions. The robot’s odometry model was set to add normally
distributed zero-mean, 1% variance error to translations and
normally distributed zero-mean, 1% variance error to rotations.
Each observation was collected by placing a simulated camera
at the ground truth pose of the robot, and taking two images,
one along the global x axis and one along the y axis. It was
assumed that in a real-world setting the camera would have the
ability to align itself using a procedure which is external to the
robot drive mechanism, possibly using a compass and pan-tilt
unit. A single observation was defined as the composite image
obtained by tiling the two images side by side.

The experiments were conducted as follows: the robot was
placed at the centre of the room, and the trajectory rn(t) was
executed over five degree increments in t. At each pose, an
observation was obtained and the Kalman filter was updated.
The visual map was updated whenever the filter indicated that
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the robot was more than 6.7cm from the nearest observation in
the visual map, and exploration terminated when 100 images
had been added to the map. The constant k in equation (8)
was set to 0.2m. The ground-truth pose, the filter pose and the
control inputs were recorded for each pose along the trajectory.

For the purposes of comparison, an additional exploratory
policy was run representing an extremum of the different n
settings. The Star policy returns to the origin to re-localize
after each new image was added to the map, as shown in
figure 4(b). This curve corresponds to a large setting of n.

Figure 4(c) depicts the trajectory traced by the robot for
our exploration algorithm. The curve marked with ’o’ symbols
corresponds to the ground truth position of the robot at each
point along the trajectory, whereas the curve marked with ’+’
symbols traces the pose estimate computed by the Kalman
filter. For the purposes of our analysis, we note that small
rotation errors at the outset of the trajectory can lead to
a map has a small rotation about the origin, and we have
corrected this rotation versus the ground truth. In practise this
information would not be available to a real robot, but the
rotation error would not affect the utility of the constructed

map.
Figure 5(a) plots the deviation from ground truth for the

Kalman filter (’+’) and the robot’s odometer (’o’). We define
the mapping error to be the mean Kalman filter error over
all time, and these results are reported for each policy in
figure 5(b). In order to measure efficiency, figure 5(c) plots
the length of the trajectory for the three methods. Clearly,
the online policy represents a significant improvement in
efficiency over the Star policy, and is only about 50% more
costly than the most aggressive exploration policy (n = 0).

V. RELATED WORK

There exist planning methodologies that can exactly com-
pute optimal plans or policies in expectation over more than
a one-step horizon, e.g., by maintaining a distribution over
possible states of the world and computing the strategy that
is optimal in expectation with respect to that distribution. One
such approach is the Partially Observable Markov Decision
Process, or POMDP [7], [8]. However, the major disadvantage
of the POMDP for our control problem is computational
intractability. Most POMDP solution algorithms are known to



be unable to scale to problems with more than a few thousand
discrete states [9], [10], and we would like to compute the
optimal trajectory over all possible maps, a continuous state
space that is not amenable to standard POMDP formulations.

Our work is an instance of the problem of simultaneous
localization and mapping (SLAM). This problem has received
considerable attention in the robotics community [3], [4],
[11], [12], primarily in the context of computing range-based
maps with spatially localized features. The state of the art
can be broadly subdivided into one of two approaches and
various hybrids. One family of methods relies upon unimodal
estimates, such as the Kalman filter description presented
here. The map is represented as a set of landmarks derived
from a range sensor, and a Kalman filter or particle filter
is used to minimize the total uncertainty of the robot pose
and the individual landmark positions [13]. A second family
of approaches uses more complicated representations such
as particle filters or mixture models [11]. There are hybrid
approaches [14], [15] that reduce the computational expense,
as each update for previous approaches is quadratic in the
number of landmarks.

Of particular relevance to this paper is the problem of
planning a trajectory for minimizing uncertainty while max-
imizing the utility of the observed data. MacKay consid-
ered the problem of optimally selecting sample points in a
Bayesian context for the purposes of inferring an interpolating
function [16]. Whaite and Ferrie employed this approach as
motivation for their ‘curious machine’, a range-finder object
recognition system that selected new viewing angles in order
to optimize information gain [17].

VI. DISCUSSION AND FUTURE WORK

We have presented an algorithm for controlling a mobile
robot during exploration, that allows us to build globally
consistent maps quickly and automatically, making use of a
class of control strategies described by parametric curves. The
algorithm updates the parameter setting greedily at each time
step, choosing the parameterization that maximizes the objec-
tive function in expectation. We examined the performance
of this algorithm on the task of building a visual map, and
we showed the pose error of the online control strategy was
in general competitive with the single setting that led to the
most accurate map, while at the same time building the map
at a rate competitive with the most aggressive setting.

The online strategy currently contains at some open prob-
lems. Firstly, the reward function contains an explicit trade-
off between exploration and map accuracy, represented by the
free parameter λ. Ideally, the optimal control representation
would not contain any free parameters. We may be able to
eliminate this free parameter by choosing a different reward
function, but this is a question for further research. Secondly,
the particular parameterization may not be the best policy
class. This policy class is somewhat restrictive, in that the
single parameter essentially represents a frequency of returning
to the origin. We may be able to achieve better results using a
more general policy class, such as one of the stochastic policy
classes in the reinforcement learning literature. Finally, the

strategy is greedy, in that it attempts to choose the trajectory
based on a single projection into the future. However, as more
of the map is acquired, it may become possible to infer unseen
map structure and make more intelligent decisions, leading
to even better performance in more structured and regular
environments.
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