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Abstract

We examine the problem of minimizing uncertainty
in the automated construction of a visual map of an
unknown environment. Our work is motivated by
the idea that a robot’s exploration policy can impact
the accuracy of the resulting map, and we seek to
examine the behavior of a set of policies that exhibit
a trade-off between accuracy and efficiency. We are
further motivated by the specific requirements of
our map representation, which learns a set of im-
plicit models of visual features. Such a representa-
tion precludes the instantiation of explicitly param-
eterized landmarks, such as those employed in stan-
dard concurrent mapping and localization frame-
works. This paper examines a parameterized fam-
ily of spiral trajectories in the plane and determines
mapping accuracy as a function of the parameter-
ization. We present experimental results demon-
strating the map construction framework and dis-
cuss the implications for future work.

1 Introduction
This paper considers the problem of determining a trajectory
for automatically constructing a visual map of an unknown
environment. In particular, we examine a parameterized fam-
ily of spiral-shaped trajectories and examine the properties of
the generated map, including accuracy and coverage, depen-
dent on the trajectory parameterization. Our work is moti-
vated by the assumption that map uncertainty can be mini-
mized without resort to expensive update methods by collect-
ing observations in a principled manner. We will demonstrate
that, using a conventional Kalman Filter parameterized only
in the robot’s pose, an accurate map can be constructed.

Concurrent mapping and localization (CML) is a core
problem in robotics. For an autonomous robot to operate in an
initially unknown environment, it must first explore the world
and build a map. A wide variety of sources of uncertainty can
contribute to the introduction of errors in the robot’s posi-
tion estimate, which can subsequently contribute to errors in
the map, leading to future difficulties in establishing a con-
sistent representation of the world. Examples of sources of
uncertainty include noisy odometric encoders, wheel or foot

slippage and measurement error due to sensor noise. Further-
more, a robot is limited in its ability to accurately represent
the environment which can lead to systematic errors in its pre-
dictions about the world. While these latter inaccuracies are
not necessarily stochastic, it has proven beneficial to repre-
sent them in a probabilistic framework. Our work considers
two primary sources of uncertainty: odometric uncertainty,
and uncertainty due to modeling error.

An important aspect of our work is the visual map repre-
sentation[Sim and Dudek, 2001]. Visual maps encode visual
properties of the environment in the image domain. The en-
codings are implicit in nature, and hence are not easily repre-
sented in a traditional CML framework, particularly those ap-
proaches where spatial domain features are inferred. A visual
map is constructed by tracking salient image features over a
set of training images and then computing generative models
of the features as functions of the robot’s pose. The implicit
representation of the feature models poses a difficult chal-
lenge for accurate map construction– depending on the inter-
polating scheme employed to construct the generative model,
there is a tension between the tendency to linearize away the
non-linear aspects of feature behavior and the tendency to
model the training data with too much specificity, resulting
in instability. Regardless of which end of the spectrum the
model favors, it is often the case that an implicit model will
depend too strongly on the accuracy of the training data, and
while there are a variety of methods available for smoothing
and removing outliers in the training set, our goal is to ensure
a high standard of accuracy at the outset.

This paper builds on our recent work in which a set of
hand-crafted exploratory policies were examined for their ac-
curacy, coverage and efficiency[Sim and Dudek, 2003]. The
primary results from that work indicated that the most ac-
curate exploratory policy was also the most inefficient. The
policy in question involved exploring at increasing distances
along a series of rays emanating from a home position (Fig-
ure 1a)). After each ray is explored, the robot returns to the
home position, re-localizing against the current map as it trav-
els. By contrast, the most efficient policy was a series of con-
centric circles (Figure 1b)). While not the least accurate of
the policies examined, the concentric policy demonstrated a
clear tendency to propagate and amplify errors over time, re-
sulting in a map that was accurate near the home position but
increasingly inaccurate as the circles grew. These two poli-



−100 −50 0 50 100 150

−100

−50

0

50

100

Example Trajectory for iros simul star

X position (cm)

Y
 p

os
iti

on
 (c

m
)

(a) Star policy

−200 −150 −100 −50 0 50 100 150

−100

−50

0

50

100

150

Example Trajectory for iros simul concentric

X position (cm)

Y
 p

os
iti

on
 (c

m
)

(b) Concentric policy

Figure 1: Example Star and Concentric exploratory policies

cies can be thought of as lying at opposite extremes of a fam-
ily of parametric curves– at one end, the robot returns to the
home position at a maximal frequency, and at the other the
robot never returns. The goal of this paper is to consider one
such family of curves and determine its behavior in terms of
its demontrated relationship between accuracy and efficiency.

Given the cost of running many exploratory trajectories
and the difficulty of maintaining a consistent visual environ-
ment (particularly where illumination can vary over time), we
will approach our problem in a simulated office-like environ-
ment using a family of curves parameterized over a single
parameter. In this paper we constrain ourselves to a single
’place’ in the world, which is obstacle-free and convex in
shape. In this context we are examining a visual environ-
ment suitable for constructing a single visual map capable of
estimating metric pose information. Larger, more complex,
environments can be mapped in a topological manner using
methods described elsewhere (cf.[Kuipers and Byun, 1991;
Simhon and Dudek, 1998]).

The exploratory policies that we will consider are data-
independent– the robot’s trajectory is not a function of the
current (partial) map. While a data-driven approach to ex-
ploration is clearly beneficial, our goal in this work is to es-
tablish how well mapping can be accomplished based on a
deterministic approach, thus determining a lowest common
denominator for exploration.

The remainder of this paper will consider our problem in
greater depth, first examining related work, followed by a de-
scription of the visual map framework and our exploration
framework. We will then present our experimental approach
and results, followed by a discussion of the results and direc-
tions for future work.

2 Related Work

Our work is an instance of the problem of concurrent mapping
and localization (CML), also known as simultaneous localiza-
tion and mapping (SLAM). This problem has received con-
siderable attention in the robotics community[Smith et al.,
1990; Leonard and Durrant-Whyte, 1991; Thrunet al., 1998;
Yamauchiet al., 1998; Blaasvaeret al., 1994], primarily in
the context of computing range-based maps with spatially
localized features. The state of the art in CML can be
broadly subdivided into one of two approaches (and vari-
ous hybrids). One family of methods collects measurements
and incrementally builds the map while the robot moves
(i.e. in an on-line fashion). Usually the map is repre-
sented as a set of landmarks derived from a range sensor,
and a Kalman filter or particle filter is employed to mini-
mize the total uncertainty of the robot pose and the individ-
ual landmark positions[Leonard and Feder, 2000; Guivant
et al., 2000]. These techniques differ from earlier Kalman
filters employed for localization (c.f.[Smith et al., 1990;
Leonard and Durrant-Whyte, 1991]) in that the landmark po-
sitions, as well as the robot pose, are being estimated and up-
dated over time. While there exist approximation techniques
for reducing the computational expense (cf[Montemerloet
al., 2002]), each update in the standard on-line approach is
quadratic in the number of landmarks.

The second family of methods for CML involves first col-
lecting measurements and then post-processing them in a
batch. The standard post-processing method is to employ
Expectation Maximization (EM), again to minimize the total
uncertainty of robot poses and landmark positions[Thrunet
al., 1998]. One goal of our work is to develop an on-line ex-
ploration method which maximizes the accuracy of the map
without resort to expensive map updating. While outside the
scope of this paper, this result can in turn be employed as a
reliable prior for subsequent EM-style post-processing.

Maps based on visual information have also been ex-
amined. Nayar,et al pioneered the application of princi-
pal components analysis (PCA) to construct an appearance-
based map that enables a homing behavior for robotic naviga-
tion [Nayaret al., 1994]. Pourraz and Crowley considered the
stability of PCA-based methods for navigation[Pourraz and
Crowley, 1999], and Jugessur and Dudek looked at voting-
based methods to make appearance-based methods robust to
changes in the scene or illumination[Dudek and Jugessur,
2000]. Vision has also been employed for constructing ge-
ometric maps, which can then be used in a more traditional
CML context. Seet al extract stereo-based landmarks us-
ing a scale-invariant filter[Seet al., 2001], and Davison and
Kita considered the problem of actively servoing a stereo
head for landmark acquisition as a robot traverses uneven ter-
rain [Davison and Kita, 2001]. Finally, Dellaertet al take ad-



vantage of environmental invariants, such as a planar ceiling,
to construct a mosaic-like map by registering an ensemble of
images[Dellaertet al., 1999].

Of particular relevance to this paper is the problem of plan-
ning a trajectory for minimizing uncertainty while maximiz-
ing the utility of the observed data. MacKay considered the
problem of optimally selecting sample points in a Bayesian
context for the purposes of inferring an interpolating func-
tion [MacKay, 1992]. Whaite and Ferrie employed this ap-
proach as motivation for their ‘curious machine’, a range-
finder object recognition system that selected new viewing
angles in order to optimize information gain[Whaite and Fer-
rie, 1994], and Arbel and Ferrie further applied this approach
to appearance-based object models, selecting the viewing an-
gle that maximized the ability to discriminate between ob-
jects [Arbel and Ferrie, 1999]. In the context of mobile
robotics, Mooreheadet al, considered the problem of max-
imizing information gain from multiple sources in order to
control an exploratory robot[Mooreheadet al., 2001]. Fi-
nally, Royet alapplied this principle to the problem of robotic
path planning, instantiating the problem as a partially observ-
able Markov decision process[Roy et al., 1998]. An impor-
tant result from that work was the observation that a full so-
lution to the problem is NP-hard.

Our work is based on the visual map framework described
by Sim and Dudek[Sim and Dudek, 2001], and employs the
exploration framework described in our previous examination
of exploration trajectories[Sim and Dudek, 2003]. In the fol-
lowing sections we present the details of these approaches.

3 Visual Maps

Figure 2: Landmark learning framework: Salient features are
detected in the input images and tracked across the ensemble.
The resulting feature sets are subsequently parameterized as
functionsFi(·) of the robot pose.

Our visual map representation employs the landmark learn-
ing framework described in prior work[Sim and Dudek,
2001]. We review it here in brief and refer the reader to the
cited work for further details.

The object of visual mapping is to learn a set of image-
domain features of a scene, and describe them using a gen-
erative model so that they can be used to predict maximum-

Figure 3: A set of observations of an extracted scene feature.
The grid represents an overhead view of the pose space of
the camera, and feature observations are placed at the pose
corresponding to where they were observed.

likelihood observations from arbitrary camera poses. The fea-
tures are initially selected using a model of visual saliency,
and subsequently tracked over the pose space. The resulting
models are then cross-validated in order to select only those
features that demonstrate stability.

The framework operates as follows: Assume for the mo-
ment that the robot has collected an set of observations of a
scene with ground-truth position information associated with
each image. A corner detector is applied to a selection of
the images to select an initial set of candidate features[Shi
and Tomasi, 1994]. The selected candidates are then tracked
across the ensemble of images by maximizing the correlation
of the local intensity image of the feature. Figure 3 depicts
the result of tracking one feature across an image ensemble,
wherein the local feature intensity image is depicted at the
pose from which it was observed.

The resulting sets of tracked features are subsequently em-
ployed to construct an interpolation framework for generating
novel feature observations from arbitrary views. The observa-
tions themselves are represented as the position of the feature
in the image,z = [x y]T , and the interpolator is constructed
using simple bilinear interpolation between neighboring ob-
servations in the Delaunay triangulation of the observation
poses. This approach differs somewhat from the feature pa-
rameterization employed in[Sim and Dudek, 2001], which
computes a radial basis network interpolator of a wider vari-
ety of feature properties. In practice, an arbitrary interpola-
tion scheme can be employed and in this work we employ a
triangulation-based approach for reasons of efficiency. How-
ever, this approach does make the interpolation more suscep-
tible to outlier observations. In order to evaluate the features
and guard against outliers, the resulting models are validated
using leave-one-out cross-validation.



4 Exploration Framework
We have briefly described how a visual map can be con-
structed from an ensemble of images of the environment ac-
quired from known poses. In our prior work, these poses
have typically been measured by hand or using an observing
robot [Rekleitiset al., 2001]. One motivation for the current
work is to automate this data collection task using a single
robot.

We have adapted the Extended Kalman Filter (EKF) local-
ization framework described in the seminal papers by[Smith
et al., 1990; Leonard and Durrant-Whyte, 1991] as the ba-
sis for our exploration framework. While these papers as-
sumed a geometric representation of the environment, the vi-
sual map representation instead employs landmark observa-
tions in the image domain. It should be noted that, unlike
EKF implementations deployed for CML which encode both
robot pose and landmark position parameters, the only pa-
rameters maintained in our implementation are those of the
robot pose. Given that the EKF has been studied extensively,
we repeat here only those aspects of our implementation that
are particular to our work. Note that this description also ap-
pears in our previous work on exploration trajectories[Sim
and Dudek, 2003].

At each time stepk, the robot executes an actionu(k),
and takes a subsequent observationz. The plant model is
updated fromu according to the standard EKF formulation,
and a set of matches to known featureszi are extracted from
the observed image.

For each successfully matched feature, a predicted obser-
vation ẑi is generated using the visual map and the current
pose estimate, and the innovationvi(k + 1) is computed

vi(k + 1) = zi(k + 1)− ẑi(k + 1) (1)

The innovation covariance requires estimation of the Jaco-
bian of the predicted observation given the map and the plant
estimate. We approximate this Jacobian as the gradient of the
nearest face of the model triangulation and define it as∇hi.
Defined as such, the innovation covariance follows the stan-
dard observation model:

Si(k + 1) = ∇hiP(k + 1|k)∇hT
i + Ri(k + 1) (2)

whereP is the pose covariance following the actionu, andR
is the cross-validation covariance associated with the learned
feature model. It is important to note thatR serves sev-
eral purposes– it is simultaneously an overall indicator of the
quality of the interpolation model, as well as the reliability of
the matching phase that led to the observations that define the
model; finally it also accommodates the stochastic nature of
the sensor.

4.1 Outlier Detection
Feature correspondence takes place once an observation is
obtained. However, there may be outlier matches that must
be filtered out. As such, we employ the gating procedure
described in[Leonard and Durrant-Whyte, 1991], with the
additional constraint that the gating parameterg is computed
adaptively. Specifically, we accept feature observations that
meet the constraint

vi(k + 1)S−1
i (k + 1)vT

i (k + 1) ≤ g2 (3)

where

g2 = max(g2
base, ḡ

2 + 2σ2
g) (4)

andgbase is a user defined threshold, andḡ andσg are the
mean and standard deviation of the set of gating values com-
puted for each feature observation (that is, the left-hand side
of Equation 3). This selection ofg allows the filter to correct
itself when several observations indicate strong divergence
from the predicted observations– indicating a high probabil-
ity that the filter has diverged and affording the opportunity
to correct the error.

4.2 Map Update

Given the set of gated observations, the EKF is updated ac-
cording to the standard formulation, whereby the set of fil-
tered innovation measurements is compounded into a single
observation vector and a least-squares solution is computed
for the Kalman gain. Combined with the plant model, a pose
estimate and associated covariance are obtained. Once an
updated pose estimate is available, the successfully matched
features are inserted into the visual map, using the estimated
pose as their observation pose. It should be noted that we
also insert those observations that were invalidated by the gat-
ing procedure. We take this approach because it serves to
increase the cross-validation covariance associated with the
mis-matched feature, thereby reducing its influence for fu-
ture localization. At the end of the exploration procedure,
only those features that serve to match reliablyand localize
reliably can be selected and retained.

5 Parameterized Trajectories

In our previous work, we examined a set of hand-crafted tra-
jectories based on an intuitive sense of how the robot might
be able to minimize uncertainty while exploring[Sim and
Dudek, 2003]. In this paper, we will formalize our approach
and examine an analytic family of trajectories, parameterized
over a single parameter, that aims to capture the variety of
properties that are important for accurate and efficient explo-
ration. The specific parametric curve that we examine is ex-
pressed as the distancer of the robot from the origin as a
function of time:

rn(t) =
kt

2 + sin nt
(5)

wherek is a dilating constant that is fixed for our experiments
andn parameterizes the curve to control the frequency with
which the robot moves toward the origin. Some examples of
the curve for a variety of values ofn are shown in Figure 4.
Note that in the extreme cases, the curve never moves toward
the origin (n = 0), or will do so with very high frequency
(n →∞). Also of interest are integral values ofn, where the
curve never self-intersects, and hasn distinct lobes. Finally,
note that from an efficiency standpoint, the rate of new space
covered as a function ofθ decreases roughly monotonically as
n increases, since for largern the robot spends an increasing
amount of time in previously explored territory.
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Figure 4: Sample trajectories for a variety of values ofn.

6 Experimentation
6.1 Setup
We chose to run our experiments in a simulated office-like
environment in order to obtain accurate ground truth. The en-
vironment is composed of a single 1200cm by 600cm rectan-
gular room, with images from a real laboratory environment
texture-mapped on to the walls. Visually, the environment
is somewhat simplified compared to what the robot might en-
counter in a real-world setting. However, our experience indi-
cates that the visual mapping framework is particularly prone
to selecting environmental features that correspond to planar
patches. In this sense, the simulated environment presents
the visual mapping framework with the best possible scenario
and we can concentrate on the behavior of the framework due
to odometric and modeling error.

The simulated robot has a ring of sixteen evenly spaced
sonar sensors which are employed solely for detecting col-
lisions. The robot’s odometry model is set to add normally
distributed zero-mean, 1% standard deviation error to trans-
lations and normally distributed zero-mean, 2% standard de-
viation error to rotations. Each observation is collected by
placing a simulated camera at the ground truth pose of the
robot, and snapping two images, one along the globalx axis
and one along they axis. It is assumed that in a real-world
setting the camera has the ability to align itself using a proce-
dure which is external to the robot drive mechanism, possibly
using a compass and pan-tilt unit or an independent turret,
such as that which is available on a Nomad 200 robot. A sin-
gle observation is defined as the composite image obtained
by tiling the two images side by side. Figure 5 illustrates a
typical image returned by the camera in one direction in the
simulated environment.

The experiments were conducted as follows: for values of
n ∈ [0.0, 8.0] at increments of 0.1, the robot was placed at the
center of the room, and the trajectoryrn(t) was executed over
five degree increments int for 1000 time steps (whereby one
time step involved a rotation followed by a translation). The
constantk in Equation 5 was set to 20cm. At each pose, an
observation was obtained and the Kalman Filter was updated.
The visual map was updated whenever the filter indicated that
the robot was more than 6.7cm from the nearest observation
in the visual map. The ground-truth pose, the filter pose and

Figure 5: Simulated camera view.

the control inputs were recorded for each pose along the tra-
jectory.

6.2 Results

Figure 6 depicts a selection of the ground-truth trajectory
plotted against the filter trajectory for different values ofn.
The disparity between the two trajectories is an indicator of
the accuracy of the visual map, since the poses of the images
inserted into the visual map correspond to the filter poses.
Given that small rotation errors near the beginning of the tra-
jectory can lead to large errors at the edges of the map, even
if the map itself is conformal, we adjusted the orientation of
the filter trajectory around the starting pose to find the best fit
against the ground-truth.

Figure 7 depicts the filter error versus ground truth, as well
as the odometry error versus ground truth over time for the
corresponding values ofn. From these figures, one can ob-
serve that for some values ofn, odometry out-performs the
filter, whereas for other values the filter tracks ground truth
more accurately.

For each value ofn it is possible to compute the mean fil-
ter and odometric error over the entire trajectory. Figure 8a)
plots the mean error values for odometry and the filter as a
function ofn. It is interesting to note that asn increases the
odometry error tends to increase, due to the increasing total
magnitude of rotations performed by the robot, but the filter
error remains roughly constant. This suggests that mapping
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Figure 6: Filter vs ground truth trajectories for variousn.
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Figure 7: Filter error and odometry error versus time for variousn.

accuracy is roughly independent of the choice ofn. Note,
however, the prominent spikes in the filter error correspond-
ing to neighborhoods of integral values ofn. These values
correspond to trajectories that never self-intersect, or demon-
strate a high degree of parallelism with nearby observations.
As such, it appears that errors will propagate significantly or
the filter may even diverge when insufficient constraints are
available between neighboring paths (an instance of the aper-
ture problem). The lone exception to this trend is the value
for n = 0. In this particular case, however, the small amount
of rotation at each time step leads to a well-constrained plant
model in the Kalman Filter. We note that in a real environ-
ment, the presence of obstacles will inject large amounts of
uncertainty into the plant model as the robot circumnavigates
them, eliminating these helpful constraints.

Finally, Figure 8b) depicts the length of each trajectory as
a function ofn. The trajectory length is an approximate mea-
sure of the inefficiency of the trajectory for exploration, since
the radius of the convex hull of the explored space is bounded
from above byktmax, wheretmax is the maximal time value,
a constant across our experiments. Periodic minima in the
trajectory length correspond to points where the exploration
was terminated prematurely because the robot was unable to
safely continue. In all of these cases, the filter estimate had
diverged significantly from ground truth. As expected, in-
creasing values ofn lead to increased inefficiency.

7 Discussion and Future Work

We have presented an analysis of a family of parametric
curves and its suitability for generating exploration trajec-
tories for solving the concurrent mapping and localization
problem, as it pertains to the construction of a visual map
of an unknown environment. This study was conducted un-
der the premise that mapping uncertainty can be managed by
selecting an appropriate exploratory trajectory. The results
demonstrate that the parametric family under consideration is
in general a suitable choice for exploration in that for most
parameterizations the error in the generated map is small rel-
ative to odometric error. However, it was interesting to note
a subset of parameterizations that systematically led to di-
vergence. A somewhat surprising result was that mapping
error was relatively small for the simple spiral trajectory cor-
responding ton = 0. While this can be explained by the
small amount of accumulated odometric error, this idealized
behavior fails to account for real-world considerations. We
note that if the exploration were to continue over a longer time
interval or a larger pose space, the filter will be more likely
to diverge. Furthermore, the potential for the presence of ob-
stacles in a real environment would impose circumnavigation
requirements which could introduce the kinds of odometric
errors that might lead to divergence. This is the most plau-
sible explanation for the poor performance of the concentric
trajectory depicted in Figure 1a). Our conclusions are that it
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Figure 8: Mapping accuracy and efficiency as a function of
n.

is worth the additional effort of “re-homing” the robot from
time to time, corresponding to employing a larger value ofn.

An important aspect of of the exploratory trajectories con-
sidered in this work is that they are computed independently
of the state of the robot’s map or the uncertainty in the filter.
An obvious direction for future investigation is the question
of determining a locally optimal trajectory given the current
map and filter state. Furthermore, while it is beyond the scope
of this paper, the family of curves studied pose the problem
that the robot needs to determine a starting position at the out-
set, not to mention that the rotational symmetry of the curves
make them less suitable for irregularly shaped environments.
One potential solution to this problem is to partition the en-
vironment and build a separate visual map for each partition.
Our ongoing work reflects this goal of dealing with larger en-
vironments.
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