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Telephone: (514) 398-6319 Telex: 05 268510 FAX: (514) 398-7348

Email: cim@cim.mcgill.ca



Abstract

This paper deals with automatically learning the spatial distribution of a set of mea-
surements: images, in the examples presented here. The solution to this problem can be
viewed as an instance of robot mapping although it can also be used in other contexts. We
examine the problem of organizing an ensemble of images of an environment in terms of
the positions from which the images were obtained, and where only limited prior odomet-
ric information is available. Our approach employs a feature-based method derived from a
probabilistic robot localization framework. Initially, a set of visual landmarks are selected
from the images and correspondences are found across the ensemble. The images are then
localized by first assembling the small subset of images for which odometric confidence is
high, and sequentially inserting the remaining images, localizing each against the previous
estimates, and taking advantage of any priors that are available. We present experimental
results validating the approach, and demonstrating metrically and topologically accurate
results over two large image ensembles, even given only four initial ground truth poses.
Finally, we discuss the results, their relationship to the autonomous exploration of an un-
known environment, and their utility for robot localization and navigation.
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Self-Organizing Visual Maps

1. Introduction

This paper addresses the problem of building a map of an unknown environment from
an ensemble of observations and limited pose information. We examine the extent to which
we can organize a set of measurements from an unknown environment to produce a visual
map of that environment with little or no knowledge of where in the environment the mea-
surements were obtained. In particular, we are interested in taking a set of snapshots of the
environment using an uncalibrated monocular camera, and organizing them to quantita-
tively or qualitatively indicate where they were taken which, in turn, allows us to construct
a visual map. We assume that, at most, we have limited prior trajectory information, so
as to bootstrap the process– the source of this information might be from the first few
odometry readings along a trajectory, the general shape of the trajectory, information from
an observer, or from a localization method that is expensive to operate, and hence is only
applied at a small subset of the observation poses. While metric accuracy is of interest, our
primary aim is to recover the topology of the ensemble. That is, metrically adjacent poses
in the world are topologically adjacent in the resulting map.

The problem of automated robotic mapping is of substantial pragmatic interest for
the development of mobile robot systems. The question of how we bootstrap a spatial
representation, particularly a vision-based one, also appears to be relevant to other research
areas such as computer vision and even ethology. Several authors have considered the use
of self-organization in robot navigation [21, 1, 4, 17], often with impressive results. We
believe this paper is among the first to demonstrate how to build a complete map of a real
(non-simulated) unknown environment using monocular vision. We present quantitative
data to substantiate this.

We approach the problem in the context of probabilistic robot localization using learned
image-domain features (as opposed to features of the 3D environment) [19]. To achieve
this there are two steps involved: first, reliable features are selected and correspondences
are found across the image ensemble. Subsequently, the quantitative behaviours of the
features as functions of pose are exploited in order to compute a maximum-likelihood
pose for each image in the ensemble. While other batch-oriented mapping approaches are
iterative in nature[23, 8], we demonstrate that if accurate pose information is provided for
a small subset of images, the remaining images in the ensemble can be localized without
the need for further iteration and, in some cases, without regard for the order in which the
images are localized.

1.1. Outline. In the following section, we consider prior work related to our problem;
in particular, approaches to self-organizing maps, and the simultaneous localization and
mapping problem. We then proceed to present our approach, providing an overview of
our landmark-based localization framework, followed by the details of how we apply the
framework to organize the input ensemble. Finally, we present experimental results on a
variety of ensembles, demonstrating the accuracy and robustness of the approach.

2. Previous Work

The construction of self-organizing spatial maps (SOM’s) has a substantial history in
computer science. Kohonen developed a number of algorithms, for covering an input
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space [8, 9]. While spatial coverage was used as a metaphor, the problem of represent-
ing a data space in terms of self-organizing features has numerous applications ranging
from text searching to audition. The problem of spanning an input space with feature de-
tectors or local basis functions has found wide application in machine learning, neural nets,
and allied areas. In much of this algorithmic work, the key contributions have related to
convergence and complexity issues.

The issue of automated mapping has also been addressed in the robotics community.
One approach to fully automated robot mapping is to interleave the map synthesis and po-
sition estimation phases of robot navigation (sometimes known as SLAM: simultaneous
localization and mapping). As it is generally applied, this entails incrementally building a
map based on geometric measurements (e.g. from a laser rangefinder, sonar or stereo cam-
era) and intermittently using the map to correct the robot’s position as it moves [14, 24, 3].
When the motion of a robot can only be roughly estimated, a topological representation
becomes very attractive. Early work by Kuipers and Byun used repeated observation of a
previously observed landmark to instantiate cycles in a topological map of an environment
during the mapping process [12, 10] . The idea of performing SLAM in a topological con-
text was also been examined theoretically [5, 6]. The probabilistic fusion of uncertain mo-
tion estimates has been examined by several authors (cf, [20]) and the use of Expectation
Maximization has recently proven quite successful although it still depends on estimates
of successive robot motions [18, 22, 2].

3. Landmark Framework

Our approach employs an adaptation of the landmark learning framework described in
[19]. We review it here in brief and refer the reader to the cited work for further details.

The key idea is to learn visual features, parametrically describe them so that they can
be used to estimate one’s position (that is, they can be used for localization). The features
are pre-screened using an attention operator that efficiently detects statistically anomalous
parts of an image and robust, useful features are recorded along with an estimate of their
individual utility.

In the localization context, assume for the moment that we have collected an ensemble
of training images with ground-truth position information associated with each image. In
other words, he have the full solution to the mapping problem in hand (we will relax this
assumption in the following sections). The landmark learning framework operates by first
selecting a set of local features from the images using a measure of visual attention, track-
ing those features across the ensemble of images by maximizing the correlation of the local
image intensity of the feature, and subsequently parameterizing the set of observed features
in terms of their behaviour as a function of the known positions of the robot (Figure 1).

The resultingtracked landmarkscan be applied in a Bayesian framework to solve the
localization problem. Specifically, given an observation imagez, the probability that the
robot is at poseq is proportional to the probability of the observation conditioned on the
pose:

(1) p(q|z) =
p(z|q)p(q)

p(z)
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FIGURE 1. Landmark Learning Framework.

wherep(q) is the prior onq andp(z) is a normalization constant. For a landmark-based ap-
proach, we express the probability of the observation conditioned on the pose as a mixture
model of probability distributions derived from the individual landmarks:

(2) p(z|q) = k
∑
li∈z

p(li|q)

whereli is a detected observation of landmarki in the image andk is a normalizing con-
stant.

The individual landmark models are generative in nature. That is, given the proposed
poseq, an expected observationl∗i is generated by learning a parameterizationl∗i = Fi(q)
of the landmark, and the observation probability is determined by a Gaussian distribution
centered at the expected observation and with covariance determined by cross-validation
over the training observations. Whereas in prior work the parameterization was computed
using radial basis function networks, in this work we construct the interpolants using a
Delaunay triangulation of the observation poses. In general, the contents of the feature
vectorli itself can be any quantitative measure related to the local image neighbourhood
of the observation. For the present work we define the feature vector as the position of the
feature in the image:

(3) li = [xi yi]

A pose estimate is obtained by finding the poseq∗ that maximizes Equation 1. It should
be noted that the framework requires no commitment as to how uncertainty is represented
or the optimization is performed. It should be noted, however, that the probability density
for q might be multi-modal, and, as is the case for the problem at hand, weak priors on
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q might require a global search for the correct pose. For this work, we employ a multi-
resolution grid decomposition of the environment, first approximatingp(q|z) at a coarse
scale and computing increasingly higher resolution grids in the neighbourhood ofq∗ as it
is determined at each resolution. Figure 2 illustrates a typical probability distribution over
the pose space, given an input image.
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FIGURE 2. Likelihood function of pose of robot over 3.0m by 6.0m pose
space. Note that the distribution is not unimodal.

4. Self Organization

We now turn to the problem of inferring the poses of the training images when ground
truth is unavailable, or only partially available. The self-organization process involves two
steps. In the first step, image features are selected and tracked, and in the second step the
set of images are localized.

4.1. Tracking. Tracking proceeds by considering the images in an arbitrary order
(possibly, but not necessarily, according to distance along the robot’s trajectory). An atten-
tion operator is applied to the first imagez in the set1, and each detected feature initializes a
tracking setTi ∈ T . The image itself is added to the ensemble setE. For each subsequent
imagez, the following algorithm is performed:

1We select local-maxima of edge-density.
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(1) A search is conducted over the image for matches to each tracking set inT , and
successful matches are added to their respective tracking setsTi. Call the set of
successful matchesM .

(2) The attention operator is then applied to the image and the set of detected features
S is determined.

(3) If the cardinality ofM is less than the cardinality ofS, new tracked setsTi are
initialized by elements selected fromS. The elements are selected first on the
basis of their response to the attention operator, and second on the basis of their
distance from the nearest image position inM . In this way, features inS which
are close to prior matches are omitted, and regions of the image where features
exist but matching failed receive continued attention. Call this new set of tracking
setsTS.

(4) A search for matches to the new tracking sets inTS is conducted over each image
in E (that is, the previously examined images), and the successful matches are
added to their respective tracking set.

(5) T = T ∪ TS

(6) E = E ∪ z

The template used for by any particular tracking set is defined as the local appearance
image of the initial feature in the set. We use local windows of 33 pixels in width and
height. Matching is considered successful when the normalized correlation of the template
with the local image under consideration exceeds a user-defined threshold.

When tracking is completed, we have a set of feature correspondences across the en-
semble of images. The process isO(kn) wherek is the final number of tracked sets, andn
is the number of images.

4.2. Localization. Once tracking is complete, the next step is to determine the posi-
tion of each image in the ensemble. For the moment, consider the problem when there is
a single feature that was tracked reliably across all of the images. If we assume that the
image feature is derived from a fixed 3D point in space, the motion of the feature through
the image will be according to a monotonic mapping as a function of camera pose and
the camera’s intrinsic parameters. As such, the topology of a set of observation poses
is preserved in the mapping from pose-space to image-space. While the mapping itself
is nonlinear (due to perspective projection), it can be approximated by associating actual
poses with a small set of the observations and determining the local mappings of the re-
maining unknown poses by constructing an interpolant over the known poses. Such an
algorithm would proceed as follows:

(1) Initialize S = {(q, z)}, the set of (pose, observation) pairs for which the pose
is known. ComputeD, the parameterization ofS as defined by the landmark
learning framework.

(2) For each observationz with unknown pose,
(a) UseD as an interpolant to find the poseq∗ that maximizes the probability

thatq∗ produces observationz.
(b) Add (q∗, z) to S and updateD accordingly.
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For a parameterization model based on a Delaunay Triangulation interpolant, updating
theD takesO(log n) amortized time, wheren is the number of observations in the model.
The cost of updating the covariance associated with each model isO(k log n), wherek is
the number of samples omitted during cross-validation.

In addition, the cost of finding the maximally likely pose withD is O(m log n), where
m corresponds to the number of poses that are evaluated (finding a face in the triangulation
that contains a pointq can be performed inlog n time.). Givenn total observations, the
entire algorithm takesO(n(m + k + 1) log n) time. Bothm andk can be bounded by
constants, although in practice we typically boundk by n.

In practice, of course, there is more than one feature detected in the image ensemble.
Furthermore, in a suitably small environment, some might span the whole set of images,
but in most environments, most are only visible in a subset of images. Finally, matching
failures might introduce a significant number of outliers to individual tracking sets. Mul-
tiple landmarks, and the presence of outlier observations are addressed by the localization
framework we have presented; the maximum likelihood pose is computed by maximizing
Equation 2, and the effects of outliers in a tracked set are reduced by their contribution to
the covariance associated with that set.

When it cannot be assumed that the environment is small enough such that one or
more landmark spans it, we must rely on stronger priors to bootstrap the process. For
example, we might require the initial known poses to be close together, ensuring that they
share common landmarks for parameterization. In addition, we might take advantage of
knowledge of the order in which images were acquired along a trajectory, ensuring that as
one landmark goes out of view, new ones are present against which to localize.

In the following section we present experimental results on two image ensembles.

5. Experimental Results

5.1. A Small Scene.For our first experiment, we demonstrate the procedure on a
relatively compact scene. An ensemble of 121 images of the scene depicted in Figure 3
was collected over a 2m by 2m environment, at 20cm intervals. Ground truth was measured
by hand, accurate to 0.5cm.

Given the ensemble, the images were sorted at random and tracking was performed as
described in Section 4.1, resulting in 91 useful tracked landmarks. (A tracked landmark
was considered useful if it contained at least 4 observations). The localization stage pro-
ceeded by first providing the ground truth information to four images selected at random.
The remaining images were again sorted at random and added, without any prior infor-
mation about their pose, according to the methodology described in the previous section.
Figure 4 plots the original grid of poses, and beside it the same grid imposed upon the set
of pose estimates computed for the ensemble. While there is some warping in the mesh,
for the most part the topology of the poses is clearly preserved. It is interesting to note
that the mesh is distorted most as the y-axis increases, corresponding to looming forward
with the camera and, as such, where the nonlinearity of the perspective projection is most
pronounced.

5.2. A Larger Scene. For our second experiment, we examine a larger pose space,
3.0m in width and 5.5m in depth, depicted in Figure 5. For this experiment, 252 images
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FIGURE 3. The first scene, a 2.0m by 2.0m pose space.

FIGURE 4. Ground truth, and the map resulting from the self-organizing
process for the environment depicted in Figure 3.

were collected at 25cm intervals using a pair of robots, one of which used a laser range-
finder to measure the ’ground-truth’ pose of the moving robot[16].

As in the previous experiment, tracking was performed over the image ensemble and
a set of 49 useful tracked landmarks were extracted. In this instance, the larger interval
between images, some illumination variation in the scene and the larger number of input
images presented significant challenges for the tracker, resulting in the smaller number of
tracked landmarks.

Given the size of the environment, no one landmark spanned the entire pose space. As
a result, it was necessary to impose constraints on the input ground-truth priors, and the
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FIGURE 5. The second scene, a 3.0m by 5.5m pose space.

order in which the input images were considered for localization. In addition, a weak prior
p(q) was applied as each image was added in order to control the distortion in the mesh.

Rather than select the initial ground-truth images at random, ground truth was sup-
plied to the four images closest to the centre of the environment. The remainder of the
images were sorted by simulating a spiral trajectory of the robot through the environment,
intersecting each image pose, and adding the images as they were encountered along the
trajectory. Figure 6 illustrates the simulated ground-truth trajectory through the ensemble.
Finally, given the sort order, as images were added it was assumed that their pose fell on an
annular ring surrounding the previously estimated poses. The radius and width of the ring
was defined in terms of the interval used to collect the images. The computed priors over
the first few images input into the map are depicted in Figure 7. The intent of using these
priors was to simulate a robot exploring the environment along trajectories of increasing
radius from a home position.

As in the previous section, Figure 8 plots the original grid of poses, and beside it the
same grid imposed upon the set of pose estimates computed for the ensemble. Again, the
positivey-axis corresponds to looming forward in the image, and as such the mesh distorts
as landmarks accelerate in image space as the camera approaches them. Note however,
that as in the first experiment, the topology of the poses preserved for most of the grid.

5.3. Discussion.We have demonstrated an approach to spatially organizing images
of an unknown environment using little or no positional prior knowledge. The repeated
occurrences of learned visual features in the images allows us to accomplish this. The
visual map of the environment that is produced appears to be topologically correct and
also demonstares a substantial degree of metric accuracy and can be described as a locally
conformal mapping of the environment. This representation can then be readily used for
path execution, trajectory planning and other spatial tasks.
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FIGURE 6. Ground truth simulated trajectory.

FIGURE 7. Evolution of the annular prior over the first few input images.

While several authors have considered systems that interleave mapping and position
estimation, we believe ours is among the first to do this based on monocular image data.
In addition, unlike prior work with typically uses odometry to constrain the localization
process, we can accomplish this with essentially no prior estimate of the position the mea-
surements are collected from. On the other hand, if some positional prior is available we
can readily exploit it. In the second example shown in this paper we exploited such a prior.
Even in this example, it should be noted that the data acquisition trajectory was one that
did not include cycles. In general, cyclic trajectories (ones that re-visit previously seen
locations via another route) will greatly improve the quality of the results; in fact they are
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FIGURE 8. Ground truth, and the map resulting from the self-organizing
process for the environment depicted in Figure 3.

prerequisite for many existing mapping and localization techniques, both topological and
metric ones.

We believe that absence of a requirement of a position prior (i.e. odometry) makes this
approach suitable for unconventional mapping applications, such as the integration of data
from walking robots or from manually collected video sequences. Our ability to do this
depends on the repeated occurence of visual features in images from adacent positions.
This implies that successfuly mapping depends on images being taken at sufficiently small
intervals to assure common elements between successive measurements.
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