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ABSTRACT

We consider the problem of Simultaneous Localization
and Mapping (SLAM) from a Bayesian point of view using
the Rao-Blackwellised Particle Filter (RBPF). We focus
on the class of indoor mobile robots equipped with only
a stereo vision sensor. Our goal is to construct dense
metric maps of natural 3D point landmarks for large cyclic
environments in the absence of accurate landmark position
measurements and reliable motion estimates. Landmark es-
timates are derived from stereo vision and motion estimates
are based on visual odometry. We distinguish between
landmarks using the Scale Invariant Feature Transform
(SIFT). Our work defers from current popular approaches
that rely on reliable motion models derived from odometric
hardware and accurate landmark measurements obtained
with laser sensors. We present results that show that our
model is a successful approach for vision-based SLAM,
even in large environments. We validate our approach
experimentally, producing the largest and most accurate
vision-based map to date, while we identify the areas
where future research should focus in order to further
increase its accuracy and scalability to significantly larger
environments.

I. I NTRODUCTION

Robot localization is a well studied problem as it is
considered one of the most significant obstacles towards
real robot autonomy.Simultaneous localization and map-
ping (SLAM) is the problem of estimating both the robot’s
location and a map of its surrounding environment. It is
an inherently hard problem because noise in the estimate
of the robot’s pose leads to noise in the estimate of the
map and vice versa. In general, SLAM algorithms must
address the following parameters

• Sensors, i.e., sonar, laser or vision, wide or narrow
field of view

• Map representation, i.e., occupancy grid,2D or 3D,
natural or specialized landmarks

• Robot dynamics
• Environment dynamics, i.e., indoor or outdoor, static

or dynamic

• Framework for combining over time the incoming
sensor measurements and robot control signals

Each of these choices has advantages and disadvantages
as well as direct implications on the applicability of the
algorithms based on them. For example, sonar sensors are
cheap and can provide information360 degrees around
the robot but have limited resolution and suffer from
the perceptual aliasing problem more than any of the
others. Laser sensors, and vision, on the other hand, most
often have a limited field of view but laser sensors have
high depth resolution while vision has high perceptual
resolution. Omnidirectional cameras provide a360 degree
field of view but pay a high penalty on diminished image
resolution. Sonar and laser sensors are better suited for
planar robots that use2D occupancy grids [1] to represent
maps. Vision can be used to construct2D [2] and 3D
occupancy grids or maps of3D natural landmarks [3] and
it is not limited to planar robots. Environment dynamics
are also important as most algorithms for indoor robots do
not scale well for outdoor robots.

In terms of theoretical frameworks, the Extended
Kalman Filter (EKF) has been the most common approach
since its application by Smith, et al. [4]. By maintaining
a covariance matrix which encompasses all landmarks this
method allows the EKF to develop pose and landmark esti-
mates incrementally. However as the number of landmarks
grows this matrix quickly becomes difficult to expand and
update efficiently. It is necessary to update all elements
for any new observation and this leads to a complexity of
O(N2), where N is the number of landmarks. The EKF
is also very sensitive to outliers in landmark detection.
A single outlier measurement once incorporated into the
covariance matrix cannot be corrected at a later time if
more information becomes available.

Another approach is the use of Particle Filters to
approximate the posterior distribution over robot poses
and maps. PFs can handle outliers better than the EKF
but scale poorly with respect to the dimensionality of
the state. The Rao-Blackwellised Particle Filter (RBPF)
reduces this problem by factoring the state variables such
that by sampling over a subset of them we can marginalize
out the remaining ones [5]. Murphy [6] was the first
to study the application of RBPFs to SLAM and others



followed [7]. Sampling over robot poses allowed him
to independently estimate each landmark using an EKF.
A naive implementation would yield a complexity of
O(MN), whereM is the number of new particles at each
step. Montemerlo et al. [8] present FastSLAM a variant of
RBPF-based SLAM that introduces a tree-based structure
which refines this complexity toO(M log N) by sharing
landmarks between particles. They prove that FastSLAM
converges to the correct map for special cases with a single
particle. Similarly, Eliazar and Parr have constructed an
efficient 2D occupancy grid representation for particle-
based SLAM [9].

Central to both the EKF and PF approaches is a model
of the evolution of the system is given. In SLAM this is
traditionally a function of odometric hardware. They also
require that a probabilistic model of observations is given.
The parameters of this model are induced by our choice
of sensor and map representation.

The approach we advocate here depends on a motion
model based on visual odometry and an observation model
based on3D landmarks from stereo vision coupled with
the Scale-Invariant Feature Transform (SIFT) detector [10].
SIFT is used for robust data association. These features are
desirable as landmarks because they are invariant to image
scale, rotation and translation as well as partially invariant
to illumination changes and affine or 3D projection. This
combination can result in many viable landmarks from an
unaltered environment and in fact SIFT has been shown
to outperform other leading edge image descriptors in
matching accuracy [11].

The major contributions of this paper are two-fold.
First, we present RBPF-based SLAM utilizing vision-
based sensing, rather than traditional range sensing with
a laser. Our motion model depends on visual odometry
that generalizes to unconstrained3D motion. That is,
we assume no prior knowledge of the control actions
that drive the camera through the world. Furthermore,
where previous implementations of the SLAM algorithm
have generally employed sensors with a wide field of
view, our experimentation demonstrates the performance
of the algorithm using sensors with a narrow field of
view. We leverage the strengths of particle filter-based
methods for uncertainty estimation (such as the possibility
of multi-modal estimates), with data association techniques
that were previously only applied to Kalman-filter based
estimators [3,12,13].

This paper is structured as follows. We first present
an overview of Bayesian filtering applied to SLAM and
its RBPF approximation. We then focus on the details of
our vision-based SLAM presenting our map representation,
observation and motion models. We provide experimental
results to support the validity of our approach and conclude
by discussing scalability issues and implementation pitfalls

along with directions for future work.

II. SLAM USING THE BAYES FILTER

Formally, and in accordance with popular SLAM liter-
ature, let at timet, st denote the robot’s pose,mt the map
learned thus far andxt = {st,mt} be the completestate.
Also, let ut denote a control signal or a measurement of
the robot’s motion from timet− 1 to time t andzt be the
current observation. The set of observations and controls
from time0 to t are denoted aszt andut respectively. Our
goal is to estimate the density

p(st,mt|zt, ut) = p(xt|zt, ut) (1)

That is we must integrate the set of observations and
controls as they arrive over time in order to compute the
posterior probability over the unknownstate. Applying
Bayes rule on 1 we get [14]

p(xt|zt, ut) = Bel(xt) =

ηp(zt|xt)
∫

p(xt|ut, xt−1)p(xt−1|zt−1, ut−1)dxt−1 =

ηp(zt|xt)
∫

p(xt|ut, xt−1)Bel(xt−1)dxt−1 (2)

whereη is a normalizing constant.
Equation 2 allow us to recursively estimate the posterior

probability of maps and robot poses if the two distributions
p(zt|xt) andp(xt|ut, xt−1) are given. These distributions
model the observations and robot motion respectively. For
SLAM, an analytical form forBel(xt) is hard to obtain
and as such the Bayes filter is not directly applicable. In-
stead we approximate it using a Particle Filter as described
in the next section.

A. Rao-Blackwellised Particle Filters

In the previous section we showed how we can recur-
sively estimate the posterior densityBel(xt) using the
Bayes filter. As discussed we cannot directly implement
this filter and so we employ a common approximation
technique known as Particle Filtering. PF is a general
method for approximatingBel(xt) using a set ofm
weighted particles,Bel(xt) = {x(i), w(i)}i=1,···,m. The
system is initialized according top(x0) and the recursive
update of the Bayes filter proceeds in the following steps:

1) for each particlei
2) Sample fromBel(xt−1) using the weighted

samples, giving{x(i)
t−1}

3) Sample fromqt = p(xt|xt−1, ut) (also known
as the proposal distribution), givingx(i)

t

4) Compute the importance weight,w(i) according to
p(zt|x(i)

t ), the observation density
5) end for
6) Normalize the weights such that they add to1.0



7) Resample from the particles proportionally to their
weight

This procedure is known assampling-importance-
resampling[15]. A major caveat of the standard PF is that
it requires a very large number of particles as the size
of the state increases. Since for SLAM thestate of the
system includes the map that often has tens of thousands of
landmarks, the PF is not applicable from a practical point
of view. The method of Rao-Blackwellization reduces the
complexity of the PF by sampling over a subset of thestate
variables and marginalizing out the remain ones [16]. In
the case of SLAM, we sample over possible robot poses,
st, and then marginalize out the map [6]. The posterior
then is factored as:

Bel(xt) = Bel(st,mt) = p(st,mt|zt, ut) =

p(st|zt, ut)
∏
k

p(m(k)|st, zt, ut) (3)

wherem(k) denotes thek − th landmark in the map. We
use a standard PF to estimatep(st|zt, ut) and an EKF for
each of thek landmarks.

III. V ISION-BASED SLAM

In this section we present the details of our approach to
vision-based SLAM using the RBPF. We first describe how
we represent maps that are central to our method. Next we
define observations and how we compute the observation
likelihood followed with a description of our motion model
based on visual odometry.

A. Map Representation

We construct maps of naturally occurring3D landmarks
similar to those proposed in [3]. Each landmark is a vector
l = {P,CG, α, s, f} such thatP = {XG, Y G, ZG} is a3-
dimensional position vector in the map’s global coordinate
frame,CG is the3×3 covariance matrix forP , andα, s, f
describe an invariant feature based on the Scale Invariant
Feature Transform [10]. Parameterα is the orientation of
the feature,s is its scale andf is the36-dimensional key
vector.

B. Observation Model

Let IR
t andIL

t denote the right and left gray scale im-
ages captured using the stereo camera at timet (Figure 1).
The right camera is the reference camera. We compute
image points of interest from both images by selecting
maximal points in the scale space pyramid of a Difference
of Gaussians [10]. For each such point, we compute the
SIFT descriptor and record its scale and orientation. We
then match the points in the left and right images in

Fig. 1. Sample left and right images from the stereo head.

order to compute the points’3D positions in the camera
coordinate frame. Matching is constrained by the stereo
camera’s known epipolar geometry and the Euclidean
distance of their SIFT keys. Thus, we obtain a setOC =
{o1, o2, · · · , on} of n local landmarks such thatoj =
{Poj = {XL

oj
, Y L

oj
, ZL

oj
}, poj = {roj , coj , 1}, CL, α, s, f}

wherepoj = {roj , coj , 1} is the image coordinates of the
point andj ∈ [1 · · ·n].

An observation is defined as a set ofk correspondences
between landmarks in the map and the current view,zt =
∪1···k{li ↔ oj} such thati ∈ [1..m] and j ∈ [1..n]
where m is the number of landmarks in the map and
n is the number of landmarks in the current view. Each
local landmark either corresponds to a mapped landmark
lk, or has no corresponding landmark, denoted by the null
correspondencel∅. We compare the landmarks’ SIFT keys
in order to obtain these correspondences just as we did
before during stereo matching. There are no guarantees
that all correspondences are correct but the high specificity
of SIFT results in a reduced number of incorrect matches.

A pose of the camera,st, defines a transformation
[R, T ]st

from the camera to the global coordinate frame.
Specifically,R is a 3× 3 rotation matrix andT is a 3× 1
translation vector. Each landmark in the current view can
be transformed to global coordinates using the well known
equation

PG
oj

= Rst
Poj

+ Tst
(4)

Using Equation 4 and the Mahalanobis distance metric
we can define the observation log-likelihood,log p(zt|mi

t).
Special consideration must be taken when computing this
quantity, particularly where large numbers of feature ob-
servations, with significant potential for outlier correspon-
dences, are present. We compute it by summing over the
feature correspondences:

log p(zt|mi
t) =

∑
k

log p(ok|lik) (5)

The log-likelihood of thek-th observation is given by

log p(ok|lik) = −0.5 min(Tl, (PG
ok
−PG

k )T S−1(PG
ok
−PG

k ))
(6)

where the correspondence covarianceS is given by the
sum of the transformed observation covarianceCL

ok
and



the landmark covarianceCG
k :

S = Rst
CL

ok
RT

st
+ CG

k . (7)

For the null correspondence,S is assumed to be zero.
The maximum observation innovationTl is selected

so as to prevent outlier observations from significantly
affecting the observation likelihood. However, given the
potentially large numbers of correspondences, even with a
reasonable setting forTl (in our case, 4.0), the magnitude
of log p(zt|mi

t) can be such that raising it to the exponen-
tial to evaluate thei-th particle weight:

wi =
p(zt|mi

t)∑N
j=1 p(zt|mj

t )
(8)

results in zero weights. In order to preserve numerical
accuracy, we note the following simplification. LetHi =
− log p(zt|mi

t). Without loss of generality, assume thatm0
t

is the particle that minimizesHi. Then for all particles:

log p(zt|mi
t) = −(H0 + H ′

i). (9)

whereH ′
i = Hi −H0.

Substituting into Equation 8:

wi =
exp(−(H0 + H ′

i))∑N
j=1 exp(−(H0 + H ′

i))
(10)

=
exp(−H0) exp(−H ′

i)

exp(−H0)
∑N

j=1 exp(−H ′
i)

(11)

=
exp(−H ′

i)∑N
j=1 exp(−H ′

i)
(12)

Note that for m0
t , H ′

i = 0, so we guarantee that
at least one particle has a numerator of 1, above, and
the denominator is at least 1.0. This approach effectively
eliminates the probability mass associated with outliers
that is common to all particles. It is also important to
note that using this approach assures that all particles have
comparable weights – every particle has the same number
of input observations, and outliers are represented in the
model on a per-particle basis. Hence, a particle with more
outlier matches will have a lower weight than a particle
with better data association.

C. Motion Model

An essential component to the implementation of RPBF
is the specification of the robot’s motion model,ut. In
all previous work, this has been a function of the robot’s
odometry, i.e., wheel encoders that measure the amount the
robot’s wheels rotate that can be mapped to a metric value
of displacement and rotation. Noise drawn from a Gaussian
is then added to this measurement to take into account
slippage as the wheels rotate. Odometric measurements of
this type are limited to robots moving on planar surfaces.

We want to establish a more general solution. Thus, we
obtain ut measurements by taking advantage of the vast
amount of research in multiple view geometry. Specifically,
it is possible to compute the robot’s displacement directly
from the available image data including an estimate of the
uncertainty in that measurement.

Let It and It−1 represent the pairs of stereo images
taken with the robot’s camera at two consecutive intervals
with the robot moving between the two. For each pair
of images we detect points of interest, compute SIFT
descriptors for them and perform stereo matching, as
described earlier in section III-B, resulting in2 sets of
landmarksLt−1 and Lt. We compute the camera motion
using a non-linear optimization algorithm minimizing the
re-projection error of the3D coordinates of the landmarks.
We employ the Levenberg-Marquardt (LM) non-linear
optimization algorithm [17]. We utilize the3D coordinates
of our landmarks and use the LM algorithm to minimize
their re-projection error. Let̃st be the6-dimensional vector
s̃t = [roll, pitch, yaw, T11, T21, T31] corresponding to a
given[R, T ]. Our goal is to iteratively compute a correction
term χ

s̃i+1
t = s̃i

t − χ (13)

such as to minimize the vector of error measurementε,
i.e., the re-projection error of our3D points. For a known
camera calibration matrixK, ε is defined as

ε =


εT
0

εT
1
...

εT
k

 =


p0

t −K(RP 0
t−1 + T )

p1
t −K(RP 1

t−1 + T )
...

pk
t −K(RP k

t−1 + T )

 (14)

Given an initial estimate for the parameters, we wish to
solve forχ that minimizesε, i.e.,[

J
λI

]
χ =

[
ε

λd

]
⇔ (JT J +λI)χ = JT ε+λId (15)

whereJ = [∂ε0
∂χ , · · · , ∂εk

∂χ ]T , is the Jacobian matrix,I is the
identity matrix andd is an initial solution that in this case
is set to zero rotation and translation. The LM algorithm
introduces the variableλ that controls the convergence of
the solution by switching between pure gradient descent
and Newton’s method. As discussed in [18] solving Equa-
tion 15, i.e., the normal equations, minimizes

||Jχ− ε||2 + λ2||χ− d||2 (16)

The normal equations can be solved efficiently using the
SVD algorithm. A byproduct from solving Equation 16
is that we also get the covariance of the solution in the
inverse ofJT J .



Fig. 3. Sample images from the 4000 frame sequence.

(a) (b)

Fig. 2. The RWI B14 robot we used for data collection as (a) seen from
a distance and (b) closeup of its head.

IV. EXPERIMENTAL RESULTS

For the purposes of our experiments, we used an RWI
B14 robot with a BumbleBee stereo head from Point Grey
Research. The robot is shown in Figure 2. We manually
drove it through through two connecting rooms in a lab-

oratory environment, and we collected 4000 images along
a trajectory of approximately 67.5m. Figure IV displays a
subset of the collected images (every 500th frame). While
the visual odometry produces 6-DOF motion estimates, we
chose to estimate only three parameters in constructing
st from s̃t. While for this particular experiment, this
assumption was reasonable, we have preliminary results
suggesting that relaxing the assumption altogether will be
successful [19].

As a summary of the map construction process, Ta-
ble I describes at 200 frame intervals the mean number
of landmarks per particle (SIFT features observed more
than three times), the total distance travelled according
to the robot’s odometer, and the total number of SIFT
features (landmarks have been observed at least three
times, whereas SIFT features have been observed at least
once, and are removed if unobserved for a second time
within three frames).

Figure 4 depicts the map constructed for the maximum-



Fig. 4. The constructed map for the best sample at the end of exploration.
The blue trajectory indicates the trajectory of the best sample and the
green trajectory indicates the visual odometry measurements. The robot
odometer (not used for map estimation) is plotted as a yellow trajectory.
Landmark positions are marked with red ‘X’s. The set of particles is
shown by the cyan blob near the center. The width of the map is
approximately 18m.

Fig. 5. The constructed map based solely on the visual odometry.

Fig. 6. The constructed map based solely on the robot’s odometer (which
was not used for constructing the map in Figure 4).

likelihood particle at the end of exploration. This map is
not post-processed to remove noise or perform any global
optimization. The blue trajectory indicates the trajectory
of the best sample and the green trail indicates the visual
odometry measurements. The robot odometer (not used
for map estimation) is plotted as a yellow trajectory. All
three trajectories begin from the origin, on the left side of
the image. Landmark positions are marked with red ‘X’s.
The set of particles is shown by the cyan blob near the
center. To the best of our knowledge, this is the largest
and most accurate SLAM-based visual map construction in
existence. Similarly, Figures 5 and 6 depict the map as con-
structed using only visual odometry and the robot’s odome-
try, respectively. Clearly, the filter out-performs both kinds
of odometry. Further results and discussion can be found
on the web at http:\\www.cs.ubc.ca/˜simra/lci/fastslam/.

Figure 7 depicts the computation time for each frame of
the sequence on a 2.6GHz Pentium 4 CPU. The mean
compute time per frame is 11.9s. The base-line cost
(horizontal line near about 2s) corresponds to the motion
estimation, whereas the larger costs correspond to RBPF
updates (which are triggered only when sufficient motion
is detected). A major contributor to the increased cost
over time is the cost of matching SIFT features. For this
experiment, to ensure robustness in data association, we
employed a linear-time comparison of image features with



Fig. 7. Processing time per frame. The mean is 11.9s.

SIFT features in the map (O(MN) whereM is the number
of observed features andN is the number in the map).
There are a variety of fast methods for improving this
result, particularly kd-trees. We have found that there is
some degradation in data association quality using kd-
trees, and that the kd-tree can become overcrowded over
time as a result. Future work will address these issues.

V. SCALABILITY ISSUES ANDIMPLEMENTATION

PITFALLS

In this paper, we have presented experimental results
which push the envelope for what can be accomplished
using vision and no prior knowledge of the camera’s
motion. In particular, we are successfully building accurate
maps over long-range motion. However, there are several
considerations that were taken into account in order to
compute an accurate result in a reasonable amount of time.

There are two barriers to full frame-rate operation. First,
the number of particles must be small in order to update
the maps in a reasonable amount of time. While some
papers have argued that a proposal distribution conditioned
on the observation can lead to a filter that converges with
only one particle, we would argue that this distribution
is highly over-confident and somewhat biased, necessitat-
ing the injection of noise into the distribution, and also
necessitating a reasonably large number of particles to
ensure diversity in the filter (particularly important for loop
closing). For these experiments, we used 400 particles, and
we believe the loop can be reliably closed over reasonable
distances1. We have not experimented significantly with
fewer particles, or the level of noise that must be injected.

1Note, that with a limited field of view, the filter must also close
loops when the camera rotates away from and back to previous viewing
directions.

TABLE I

MAP CONSTRUCTION SUMMARY

Frame Mean Landmarks Distance SIFT
Number per particle traveled (m) Features

4000 11085 65.71 38394
3796 10595 61.94 36384
3600 10056 58.82 34404
3400 9694 54.83 32874
3199 9065 52.05 30639
3000 8608 48.64 28719
2797 8355 43.58 27369
2600 7769 41.02 25359
2400 7155 38.07 23259
2200 6689 34.37 21594
1998 6213 31.11 19869
1800 5379 29.25 17259
1600 4857 26.01 15264
1396 4353 22.22 13254
1200 3773 18.69 11424
997 3103 14.98 9399
800 2625 11.48 7674
600 2206 6.87 6264
400 1542 4.02 4194
191 812 0.62 2109

The second barrier is the management and correspon-
dence of SIFT features. We use 36-element SIFT feature
vectors, but perform a list traversal to match each feature.
As mentioned above, matching can be improved by using
a kd-tree, but this can present additional complications for
key maintenance (for example, deleting unmatched keys
from the tree after a few frames). Without sophisticated key
maintenance, the tree can become over-populated, making
it very difficult to verify good matches. The rate at which
SIFT keys are added is another consideration, and we insert
a limited number of keys into the database at each frame
(10-15). These insertions are predicated on the new keys
being sufficiently distinct from the keys already in the
database. Without these limits, the number of SIFT keys
can grow by up to 500 keys per frame.

Currently, we compute 6-DOF motion estimates, but
represent only a 3-DOF robot position. In related work,
full 6-DOF SLAM has been successful in only very small
environments [12, 20], and our future work will address
this challenging problem. The holy grail of the SLAM
community would be to accomplish large-scale 6-DOF
SLAM with only a monocular camera. We are also con-
sidering how our work could be extended to that problem.
We believe that the filter would require a larger number of
particles but that in principle only minor changes would
be required to our system.

VI. CONCLUSIONS

In this paper we have presented our model for vision-
based SLAM from a Bayesian point of view using the
RBPF. We show that we can successfully construct dense



metric maps of3D point landmarks for long camera
trajectories in the order of68 meters and4000 image
frames. We have utilized SIFT for identifying landmarks
and defining the observation function of our model. We
diverged from popular SLAM literature by not relying on
motion estimates based on odometric hardware but only on
visual odometry. We have identified a number of areas that
need further work to increase the computational efficiency,
and representational power of our method, in order to build
accurate maps of even larger environments.
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