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Abstract— This paper addresses the problem of exploring and
mapping an unknown environment using a robot equipped with
a stereo vision sensor. The main contribution of our work is a
fully automatic mapping system that operates without the use of
active ranger sensors (such as laser or sonic transducers), can
operate in real-time and can consistently produce accurate maps
of large-scale environments. Our approach implements a Rao-
Blackwellised particle filter (RBPF) to solve the simultaneous lo-
calization and mapping problem and uses efficient data structures
for real-time data association, mapping, and spatial reasoning.
We employ a hybrid map representation that infers 3D point
landmarks from image features to achieve precise localization,
coupled with occupancy grids for safe navigation. This paper
describes our framework and implementation, and presents our
exploration method, and experimental results illustrating the
functionality of the system.

I. INTRODUCTION

For a robot to operate autonomously in its environment, it
first requires an accurate representation that facilitates local-
ization and navigation. While the problem of automatically
constructing such a representation is largely solved for robots
equipped with active range-finding devices (and generally
operating in planar worlds, e.g. [1]), for a variety of reasons the
task remains challenging for robots equipped only with vision
sensors. This paper presents a solution to the autonomous
exploration and mapping problem using a robot equipped only
with a stereo camera and an odometry sensor. In particular,
we demonstrate a consistent, convergent simultaneous local-
ization and mapping (SLAM) solution and the generation of a
map representation that facilitates both accurate localization
and collision-free navigation. Furthermore, the mapping is
accomplished in real-time under fully autonomous planning
and control. In this light our work is unique among the extant
vision-based mapping frameworks.

The last decade of robotics research has generated a mul-
titude of approaches to the SLAM problem. Central to this
problem is the probabilistic estimation of a map conditioned
on a robot’s noisy actions and observations. In general, it
has been demonstrated that with a highly accurate sensor
and some straightforward assumptions about the world (e.g.

a planar pose space), a robot can successfully map a large
indoor environment in real-time. The main difficulty with these
approaches is that they rely on active (energy-emitting) laser
range-finding sensors, and they assume that all of the important
obstacles in the world lie in the plane of the sensor. One
can easily demonstrate that many, perhaps most, environments
contain obstacles violating this assumption. Furthermore, the
data returned by a laser tends to be impoverished in that
substantial travel may be required (integrating measurements
along the way) in order to infer a robot’s position. Finally,
there are many potential scenaria where an active sensor is
undesirable.

The primary alternative to active range sensing is the passive
approach afforded by stereo imagery. These approaches benefit
in that the information contained in a single image can often
provide substantial discriminative power for localization, and
that a stereo sensor can provide a 3-dimensional (or 2.5-D)
representation of potential obstacles. The main drawback of
stereo sensing and image-based sensing in general is that
noise plays a substantial role in diluting a robot’s inferential
power, particularly as it applies to geometric reasoning. As
a result, the application of successful range-based techniques
has proven to be a challenge, particularly as it applies to
occupancy-grid-based SLAM. This fact is evident in that of all
of the vision-based SLAM solutions to date, the vast majority
have computed only landmark (feature)-based representations
and depended on human control or active range sensing for
planning and obstacle detection and avoidance.

The goal of our work, therefore, is to use vision to au-
tonomously explore an unknown environment and build a
consistent map with an accuracy that is competitive with active
range-sensing solutions. We aim to overcome the limitations
of previous vision-based approaches by providing a measure
of occupancy of the world to facilitate obstacle avoidance and
navigation, and similarly we demonstrate that our approach
can map obstacles that a traditional range finder would omit.

Our approach to the autonomous mapping problem is based
on the successful combination of techniques in SLAM, ef-
ficient data association, data management and planning. In



particular, our SLAM approach is based on mapping 3D
point landmarks using the Rao-Blackwellised particle filter
(RBPF) [2]. The landmarks are detected in images using the
scale-invariant feature transform (SIFT) [3], matched using
efficient best-bin first KD-tree search [4], and efficiently stored
using the FastSLAM framework [5]. While in previous work
we have demonstrated consistent, accurate SLAM results using
this framework [6], [7], a landmark-based map is insufficient
for path planning and obstacle avoidance. As such, we use a
unique just-in-time occupancy representation, computed as a
by-product of the SLAM filter in order to provide a reliable
2.5D spatial representation of the world. Using this represen-
tation, we perform real-time path planning and we employ a
technique similar to frontier-based exploration [8] to ensure
coverage of the environment.

The remainder of this paper presents related work, our
approaches to SLAM, representation, and exploration, and
finally experimental results demonstrating the success of our
approach.

II. RELATED WORK

This paper is an extension of our previous work addressing
vision-based SLAM [6], [7], in which an RBPF framework
was employed to perform SLAM on data sets collected
while navigating a robot using human teleoperation. This
paper extends our prior work by considering the problems
of autonomous navigation and exploration, and presenting an
efficient hybrid mapping approach for facilitating real-time
occupancy updating. Our work is also distantly related to
that of [9], in which a robot navigates and maps a small
environment.

While the SLAM literature is vast, only a small number of
solutions facilitate real-time control and consistent mapping.
Furthermore, most of the SLAM literature focuses on active
range sensing, such as the SICK laser range-finder. For brevity,
we will consider here only those solutions that use vision or
that present results directly relevant to our work.

Our SLAM solution is based on the Rao-Blackwellised
particle filter approach presented by Murphy [2], and later pop-
ularized by a series of papers by Montemerlo et al. [5], [10]. In
this approach, a set of samples are maintained representing the
probability distribution over the robot’s trajectory, and the map
features (landmark or grid cell) probability estimates become
independent when conditioned on the sampled trajectory. The
RBPF approach has been successfully applied using vision-
based landmarks, as in [7], and also using occupancy grid
representations, as in [11], [12] and [13]. Other vision-based
SLAM approaches include the view-based information filter
by Eustice et al [14], and the landmark-based approaches by
Davison and Kita [15], [16] and Se et al [17]. In the latter ap-
proaches, the environments considered were reasonably small,
and landmark estimates were considered to be independent
under a single trajectory hypothesis.

This paper also considers the problem of exploration for
map construction. This problem has received considerable
attention in the context of both landmark-based mapping [18],
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Fig. 1. Conceptually, each sample has an associated map, organized by SIFT
descriptor. Each SIFT descriptor might have multiple landmark estimates, each
spatially distinct.

[19] and occupancy-grids [8], [20], [21]. In general, all of
these approaches have in common the concept of information
gain- which destinations in the world are most informative for
mapping? While Stachniss et al demonstrate a full Bayesian
computation of informative actions for exploration using the
RBPF [21], we use the decidedly simpler approach suggested
by Yamauchi, et al [8].

III. SIMULTANEOUS LOCALIZATION AND MAPPING

We represent map estimation as the evolution of a Rao-
Blackwellised particle filter [2]. In this context, the trajectory
and landmark distribution is modeled as a dynamic Bayes
network, where trajectories are instantiated as samples, and the
landmark distribution can be expressed analytically for each
trajectory. At time t, let st = {s1, . . . , st} denote the vehicle
trajectory, mt the map learned thus far and xt = {st,mt} be
the complete state. Also, let ut denote a control signal or a
measurement of the vehicle’s motion from time t−1 to time t
and zt be the current observation. The set of observations and
controls from time 0 to t are denoted as zt and ut respectively.
Our goal is to estimate the density

p(st,mt|zt, ut) = p(xt|zt, ut) (1)

It has been demonstrated elsewhere that p(st,mt|zt, ut) can
be approximated by factoring the distribution in terms of sam-
pled trajectories st, and independent landmark distributions
conditioned on the sampled trajectories [2]:

p(st,mt|zt, ut) ≈ p(st|zt, ut)
∏

k

p(mt(k)|st, zt, ut) (2)

where mt(k) denotes the k− th landmark in the map. That is,
we instantiate a set of samples st, propagate them according
to ut, and construct maps for each according to zt.

A simplistic approach to running an RBPF for SLAM yields
a storage complexity of O(NK), where N is the number
of samples at each step and K is the number of landmarks.
However, Montemerlo et al. introduced a reference-counted
binary search tree (FastSLAM) data structure which reduces
this complexity to amortizedO(N logK) by sharing landmark



Fig. 2. Observation update (refer to text for details)

estimates between samples [5]. Each sample in the filter will
share unaltered landmark estimates with other samples (those
landmarks that have not been observed since the time the
samples became siblings). Each landmark observation results
in a landmark being copied and updated but the rest of the
map remains unaltered.

Our landmark map employs the FastSLAM data structure
with modifications to support vision-based data association.
Conceptually, each sample has an associated set of landmark
estimates, described by 3D Gaussian distributions, comprising
its map. We take advantage of the descriptive power of the
SIFT transform to improve the quality of data association.
Each SIFT ID is mapped to a unique integer which is used to
index into each sample’s map. The node returned by querying
a sample for a particular SIFT ID contains a linked list
of landmark estimates – landmarks that are visually similar
(sharing the same or similar SIFT descriptors), but which are
spatially distinct, as shown in Figure 1. Individual landmark
estimates are updated using the Extended Kalman Filter. The
observation model is described further below.

IV. OBSERVATION MODEL

Algorithm 1 Observation update procedure
F := Extract SIFT keys and positions f = {k, p} from
image.
for all features f in F do
id:= kd tree lookup(f.k) {Index into kd-tree.}
for all Samples s do

List L:= s.map lookup(id)
Find most likely landmark estimate l in L, given f.p
{Maximizing observation likelihood.}
Copy l if necessary {If shared with other samples.}
Update l with f.p using Kalman Filter update.
Update wt for s according to observation likelihood.

end for
end for

Figure 2 and Algorithm 1 summarize the observation update
process. We extract points of interest using the difference
of Gaussian detector described in [3], and construct a 128-

dimensional SIFT feature descriptor for each point. We sub-
sequently perform a linear search of the keys in the left stereo
image for the best match to each key in the right, subject
to epipolar constraints, and determine its 3D position and
covariance according to the well-known stereo equations:

Z = fB/d, X = uZ/f, Y = vZ/f (3)

where f is the focal length of the camera, B is the base-line
of the stereo head, d is the disparity between SIFT keys in the
left and right images and [u v] is the pixel position of the key
in the right camera.

In addition to obtaining a 3D position estimate for each
key, we compute the associated covariance matrix C, first by
assuming fixed noise parameters σu, σv and σd for u, v and
d respectively, and transforming the diagonal measurement
covariance S = diag(σ2

u, σ
2
v , σ

2
d) according to the Jacobian

∇h of Equation 3:

C = ∇hS∇hT (4)

In our experiments we typically use σu = σv = 10.0 pixels
and σd = 0.5 pixels.

Once landmark observations are extracted from the stereo
pair the landmark estimates must be updated for the individual
samples. To efficiently store and access what can quickly
become a large number of SIFT keys we use a best-bin-
first KD search tree. The KD-tree facilitates nearest-neighbor
matching in time logarithmic in the size of the tree, and
has been demonstrated to be reliable for object recognition
tasks [4]. The disadvantage of using a KD-tree is that it can
sometimes produce not the nearest match but a close match.
We maintain a single tree for the sensor and associate an
arbitrary integer ID with each SIFT identifier we add. New
keys are considered to be candidate keys and are not passed
as an observation to the particle filter until they have been
observed for a sufficient number of frames.

As described above, each particle’s map is indexed by a
set of IDs associated with SIFT descriptors and each indexed
node contains a linked list of 3D landmarks sharing that
descriptor. Multiple data associations can be entertained by the
filter because each particle determines the specific landmark
to which an observation corresponds.
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Fig. 3. Roll-up procedure for occupancy updating. The triangle represents the ancestry tree for samples in the RBPF. Squares represent samples with current
occupancy grids, whereas circles represent samples without. When the ML sample switches from s to s′ (indicated by the hat symbol), the occupancy grid is
updated by ‘rolling up’ observations from time t−k (the most recent ancestor with an up-to-date grid) to the present. Note that if s′t+1 is the only descendent
of s′t, reference counting will delete the grid associated with s′t, and a similar check is performed on the ancestor at time t− k.

After determining the data association of an observation zt
to a landmark instance, the sample weight for that landmark
is updated according to the observation likelihood:

wi,t =
p(zt|sti,mi,t−1)p(sti |st−1

i , ut)

q(sti|st−1
i , ut, zt,mt−1)

wi,t−1 (5)

= p(zt|si,t,mi,t−1) wi,t−1 (6)
= k exp(−0.5∆zTΣ−1∆z) wi,t−1 (7)

where we are assuming a standard proposal distribution
q(sti|st−1

i , ut, zt,mt−1) = p(sti|st−1
i , ut), based on a model

of robot odometry, and ∆z = h(si,t)−zt, h(·) is a generative
model of the observation as a function of pose, Σ is the
sum of the measurement covariance and prediction covariance.
In short, the particle is weighted according to how well the
current observation is consistent with the map constructed
from that particle’s trajectory. For a deeper discussion of the
weighting and resampling approach, and a presentation of
other proposal distributions of interest, we refer the reader
to [7].

V. JUST-IN-TIME OCCUPANCY UPDATING

Up to this point we have described the inferential system
we use for solving the SLAM problem. Our SLAM solution is
based entirely on inference from 3D landmark observations,
and the map maintained for SLAM is likewise a landmark
representation. However, in order to navigate, the robot also
requires an occupancy representation. Our approach to this
problem is to compute the maximum-likelihood occupancy
grid after each observation update in the filter, conditioned
on the current maximum-likelihood trajectory in the RBPF.

Consider for the moment an RBPF with only a single sam-
ple. After each observation update, the maximum-likelihood

occupancy map can be computed by merging the occupancy
map from the previous time-step with depth information from
the current stereo image [9]. Specifically, assuming that the
columns of the stereo image have been rectified to be perpen-
dicular to the ground plane, for each column in the image we
determine the closest obstacle by scanning from the bottom
row to the top, computing depth from the stereo disparity
and omitting obstacles which are situated above the robot’s
height. Given this radial representation of the robot’s view, the
maximum-likelihood occupancy grid is updated, conditioned
on the sample’s pose.

In the case of an RBPF with multiple samples, a difficulty
arises if the maximum-likelihood state switches from one
sample to another. A naive solution would be to maintain
an occupancy grid for every sample, resulting in very high
memory consumption and computationally expensive updat-
ing. Alternatively, one could use the DP-SLAM framework to
efficiently maintain the distribution over all grids [13]. How-
ever, we are interested only in computing the most likely grid
for the purposes of path planning, and so such a representation
is computationally unnecessary. Instead, we propose a ‘just-
in-time’ approach to grid updating.

When the maximum-likelihood (ML) sample switches from
one sample ŝt to another ŝ′t, due to an observation update, the
previous ML grid is stored with the old sample. The new ML
sample checks its grandparent (parent(parent(s′t)) to see if
it was the ML sample at time t−2 (and hence had a grid), and
if so, it copies that grid and updates it with the most recent
depth image1. If the grandparent didn’t have an updated grid,
the search recurses backwards in time to t−3, et cetera to find

1By definition, if the current sample’s parent has a grid then it was the ML
sample at t − 1.



the most recent ancestor in time with a grid, and then that grid
is copied and updated by ‘rolling up’ the depth observations
from that point in time to the present.

This system computes the ML grid, but a side-effect will
be a large number of grids in memory. This problem is solved
using a reference counting scheme. When a child sample ‘rolls
up’ its parent’s grid, the child decrements a reference count in
its parent indicating that it no longer needs the parent’s grid.
Likewise, if a child sample is deleted due to resampling (or
pruned because it no longer has descendents), it decrements
the reference count stored by the parent. When the reference
count stored by the parent reaches zero, it knows that none
of its descendents depend on its grid and it can be deleted.
Figure 3 summarizes this approach.

In a test experiment running an RBPF with 1000 samples
for 8500 odometric measurements, 1880 observation updates,
and 464 filter resampling operations, we observed that on
average, 10 occupancy grids were stored in memory, and
the maximum number at any point in the filter evolution
was 23. Furthermore, we have observed that the cost of
rolling up a grid to the current time step is usually very
inexpensive (typically faster than other costs, such as SIFT
extraction), to the extent that we can easily run the RBPF with
1000 samples and grids of size 700 by 700 pixels at 10cm
resolution without significant concerns about computational
cost or memory consumption.

It should be emphasized that we are not duplicating the DP-
SLAM approach of Eliazar and Parr [13]. In that work the
occupancy grid is used for localization and inference in the
SLAM filter, whereas we do not use the grid for localization,
nor do we maintain a full distribution over occupancy grids
but rather compute only the maximum likelihood grid solely
for the purposes of path-planning. In this sense, the grid is
a by-product of the SLAM filter which computes pose and
landmark estimates.

VI. AUTONOMOUS EXPLORATION

The purpose of exploration is to construct a map such that
a robot can navigate reliably throughout the environment. We
use a frontier-based approach similar to that in [8] to compute
optimal destinations in the world to expand the coverage of the
map. Once full coverage is achieved, the robot may continue to
explore regions that appear to be poorly mapped. We compute
destinations using the ML occupancy grid m̂t. Specifically, the
robot selects its next goal pose by evaluating safely traversable
grid cells according to the value function

goal = arg max
s
H(s|m̂t)

where
H(s|m̂t) =

∑

θ

V (s, θ, m̂t)

and the value function V is computed by casting a ray from
pose s in the direction θ in map m̂, and returning a value
dependent on the first non-empty grid cell s′ that the ray
intersects:

Vs′ occupied = 0

and

Vs′ unknown = exp(−0.5(||s′ − s|| − r∗)2/σ2).

Here, V is maximized when the robot is a distance r∗ from
an unknown cell. In our current implementation, H samples
angles at five degree intervals, r∗ is 2.0m and σ is 0.5m. The
purpose of r∗ is to ensure that goal poses are not prematurely
discovered to be occupied by obstacles, and to maintain a
reasonable viewing distance for the landmark-based RBPF.

Once a goal pose is selected, the robot plans a path to it
using A∗ search in the occupancy grid and begins executing
the trajectory, updating the RBPF along the way. After each
observation update, the robot checks that its current plan is
still safely traversable- if not, a new plan is computed, and if
no such safe plan exists the robot selects a new goal.

Upon reaching a goal pose the robot pans its camera through
360 degrees to maximize the coverage of the map at that
location, and upon successful completion of this manoeuvre
it computes a new goal. Figure 4 depicts a small sequence
of goal planning and navigation operations. A full animation
of the exploration and map construction sequence is available
on-line at http://www.cs.ubc.ca/˜simra/iros06/
gridmap.avi.

It is important to note that we have made several strong
assumptions using this approach. First, path planning using
only the ML occupancy grid can result in failed plans when the
ML grid switches between samples. Our empirical experience
indicates that while new paths must often be computed (and
can be recomputed quickly and inexpensively), it is relatively
rare that a goal is unreachable. Second, we are assuming that
coverage in the occupancy grid is equivalent to good coverage
(and good convergence) in the landmark-based map. Our only
evidence to support this assumption is the fact that total
localization failures (filter divergence) were extremely rare
throughout our testing and experimentation. In short, while the
approach we are using is sub-optimal from an information-
theoretic standpoint, it is very easy to implement, fast to
compute, produces consistent maps and achieves coverage.

VII. EXPERIMENTAL RESULTS

For the purposes of our experiments, we used an Activmedia
Powerbot robot with a Digiclops (trinocular) stereo head from
Point Grey Research. The robot explored a laboratory envi-
ronment consisting of two rooms of total size approximately
19m by 16.5m. Some example images of this environment are
shown in Figure 5. The environment is particularly challenging
due to the prevalence of natural light (causing image satura-
tion), untextured specular regions (such as book cases and
even the floor), variations in motion noise due to transitions
between carpet and tile, and finally the dynamics of human
occupants in the lab.

In this experiment, the robot collected 11,315 odometry
measurements at a rate of about 5.4Hz. The maximum trans-
lation velocity of the robot was 0.12m/s and the maximum
rotational velocity was 8 degrees/s. Observation updates were



Fig. 4. Sample exploration sequence. Red: the planned route to the next goal; gold: the robot’s trajectory and blue: the odometer.

Fig. 5. Sample images of the environment. Challenges include saturation from natural light, illumination variation, untextured surfaces, and obstacles that
are too tall, or too short for detection with a laser.

triggered by robot motion estimates exceeding 7cm in transla-
tion or 1 degree in rotation, resulting in 2209 observation up-
dates, at approximately 1.1Hz. The RBPF used 1000 samples
and can easily manage up to 2000 samples on a dual 3.2GHz
Pentium Xeon computer. We have found that the main cost of
processing frames is the SIFT computation.

The robot traveled an estimated distance of 120m, and
mapped approximately 7278 landmarks in about 35 minutes.

Figure 6 depicts the occupancy grid constructed from the
robot’s exploration. The grid resolution is 0.01m by 0.01m
per pixel and it accurately captures the topology of the
environment. Many of the cluttered regions correspond to
office chairs and other furniture. Figure 7 depicts the landmark
map for landmarks that were observed more than 3 times and
which were not considered to belong to the floor or ceiling.
While the landmark map appears cluttered, the accuracy of the

occupancy grid demonstrates that the landmark map provided
SLAM estimates that were accurate enough to maintain a good
map.

Figure 8 depicts the difference between the filter’s estimated
trajectory (shown in gold), and the robot’s odometer (shown
in blue). Clearly the filter estimate is correct and consistent
in that it successfully navigates through the door on several
occasions, and it successfully locates the second, narrower
door on the left side2. There is some minor deviation in
the orientation of the two rooms which may pose difficulties
in larger environments. The figure also depicts the robot’s
planned trajectory (shown in red) to an exploration goal in
the lower left. For a comparison with raw odometry, Figure 9
depicts the deviance between the robot’s odometer and the
filter estimate over time. These results clearly demonstrate

2This second door is too narrow for the PowerBot to navigate safely.



Fig. 6. Occupancy grid constructed for the maximum-likelihood sample at
the end of exploration.

how unreliable the robot’s differential drive and odometry is
for estimating motion.

VIII. CONCLUSION

This paper has demonstrated a system that is capable of
mapping a large, complex visual environment in real time.
The system explores and navigates fully autonomously and
can generate a hybrid map representation that facilitates ac-
curate localization (using visual landmarks) and safe, robust
navigation (using occupancy grids). Our system models SIFT
features for landmarks, and uses trinocular stereo to produce
occupancy grids. The topological accuracy of the occupancy
maps are due to the localization accuracy of the underlying
landmark-driven Rao-Blackwellised particle filter.

While our current work has demonstrated that robust au-
tonomous vision-based mapping can be accomplished, there
are several outstanding issues to pursue. First, a more thorough
reliability study is required to understand the conditions that
ensure filter convergence and to direct exploration in ways that
prevent filter divergence. Second, we hope to implement gaze
planning (swiveling the camera on a pan-tilt unit) for more
reliable obstacle detection and avoidance, and add more so-
phisticated exploration strategies for exploring larger environ-
ments. We are also interested in applying more sophisticated
proposal distributions [7] and running experiments in outdoor
environments.
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Fig. 7. Landmark map constructed for the maximum-likelihood sample at
the end of exploration.

REFERENCES

[1] C. Stachniss, G. Grisetti, and W. Burgard, “Recovering particle diversity
in a Rao-Blackwellized particle filter for SLAM after actively closing
loops,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), Barcelona, Spain, 2005, pp. 667–672.

[2] K. Murphy, “Bayesian map learning in dynamic environments,” in 1999
Neural Information Processing Systems (NIPS), 1999, pp. 1015–1021.

[3] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the Int. Conf. on Computer Vision. Corfu, Greece:
IEEE Press, September 1999, pp. 1150–1157.

[4] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, IEEE.
Peurto Rico: IEEE Press, June 1997, pp. 1000–1006.

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping problem,”
in Proceedings of the AAAI National Conf. on Artificial Intelligence.
Edmonton, Canada: AAAI, 2002, pp. 593–598.

[6] R. Sim, M. Griffin, A. Shyr, and J. J. Little, “Scalable real-time vision-
based SLAM for planetary rovers,” in IEEE IROS Workshop on Robot
Vision for Space Applications, IEEE. Edmonton, AB: IEEE Press,
August 2005, pp. 16–21.

[7] P. Elinas, R. Sim, and J. J. Little, “σSLAM: Stereo vision SLAM
using the Rao-Blackwellised particle filter and a novel mixture proposal
distribution,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), IEEE. Orlando, FL: IEEE Press,
May 2006, to appear.

[8] B. Yamauchi, A. C. Schultz, and W. Adams, “Mobile robot exploration
and map-building with continuous localization,” in IEEE Int. Conf. on
Robotics and Automation, Leuven, Belgium, May 16-21 1998, pp. 2833–
2839.

[9] D. Murray and J. J. Little, “Using real-time stereo vision for mobile robot
navigation.” Autonomous Robots, vol. 8, no. 2, pp. 161–171, 2000.

[10] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in Proceedings of the Eighteenth
Int. Joint Conf. on Artificial Intelligence (IJCAI-03). San Francisco,
CA: Morgan Kaufmann Publishers, 2003, pp. 1151–1156.

[11] D. Hähnel, D. Fox, W. Burgard, and S. Thrun, “A highly efficient Fast-
SLAM algorithm for generating cyclic maps of large-scale environments
from raw laser range measurements,” in Proc. of the Conference on
Intelligent Robots and Systems (IROS), 2003.



Fig. 8. Filter trajectory (gold) versus odometric trajectory (blue), and the
robot’s exploration plan (red).

0 2000 4000 6000 8000 10000 12000
0

5

10

15
Odometric deviation from filter estimate vs time

Time (Frame number)

O
do

m
et

ry
 d

ev
ia

nc
e 

fro
m

 M
L 

po
se

 e
st

im
at

e 
(m

)

Fig. 9. Odometry deviance from filter estimate versus time.
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